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Abstract
A great number of software packages combine code in high-level
languages, such as Python, with binary extensions compiled from
low-level languages such as C, C++ or Rust to either boost efficiency
or enable specific functionalities. In this context, high-level function
calls can trigger native (binary) code execution. This setup intro-
duces challenges for call graph generation. Accurate call graphs
are essential for various applications, including vulnerability man-
agement and software maintenance, as they help track execution
paths, assess security risks, and identify unused or redundant code.

This work tackles the problem of cross-language call graph con-
struction in Python. Instead of relying on static analysis, which
struggles with identifying Python-native interactions, we propose
a dynamic analysis technique which does not require inputs to
execute code. Our approach is based on two key insights: (1) when
a binary extension is imported from Python code, all its objects (e.g.,
functions) are loaded into memory, and (2) the layout of callable
Python objects contains pointers to the native functions they invoke.
By analyzing these memory layouts for every loaded object, we
identify corresponding graph edges, which link Python functions
to the native functions they eventually invoke. This is an essential
element for constructing call graphs across language boundaries.

We implement this approach in PyXray, a tool that efficiently
analyzes massive Python packages such as NumPy and PyTorch
in minutes, while significantly outpeforming existing static analy-
sis methods in terms of precision and recall. PyXray enables two
key applications: (1) cross-language vulnerability management, by
identifying whether a Python package potentially calls a vulnerable
native function and (2) cross-language bloat analysis, by quantify-
ing unnecessary code across Python and native components.
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1 Introduction
Software Composition Analysis (SCA) [24, 26, 27, 55] has become
essential for managing security risks that originate from the exten-
sive reuse of open-source software [19]. As software dependencies
grow in number and complexity, understanding not just what com-
ponents are included but also which ones are executed becomes
paramount for effective vulnerability management [19, 21, 33, 40].
Reachability analysis via call graphs [20, 29, 39] provides this insight
by identifying execution paths from application code to third-party
functions. This allows developers to determine whether a third-
party vulnerability poses a real threat to their application. Beyond
security, reachability analysis is also valuable for software mainte-
nance, as it helps detect software bloat [14, 25, 47]: if a dependency
is imported (directly or transitively) and is not reachable, it can be
removed, reducing storage requirements and runtime overhead.

Traditional SCA tools focus primarily on a single language (e.g.
C [27, 55] or Java [26]). However, studies (including ours) indicate
that 60–75% of the uncompressed size of popular package repos-
itories is binary files [49]. This suggests that current reachability
approaches that focus on a single language cover only a small
portion of the code that may execute.
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In this work, we focus on Python. Python packages frequently in-
corporate binary components implemented in languages such as C,
C++, or Rust to optimize performance or access lower-level system
functionalities [22, 32, 34]. This complicates call graph construc-
tion (and by extend reachability analysis), as traditional analysis
tools operate on either the Python or binary level, but not across
both [11, 12, 44, 56]. This gap stems from several factors, such as
diverse languages used for implementing binary components, or
variety of binding frameworks that connect Python with native
code. Without cross-language reachability analysis, developers can-
not determine which native components are actually used, leading
to bloated applications that consume excessive storage and mem-
ory resources. At the same time, security teams waste resources
addressing vulnerabilities in unused code, potentially overlooking
critical issues in reachable components.
Approach: To address these challenges, we design a dynamic
analysis that identifies the connections between Python callable
objects and their native implementations. Our dynamic analysis
does not require executing code with concrete inputs. Instead, it
leverages key observations about Python’s object system: when
a binary extension is imported, all its callable objects are loaded
into memory with their memory layouts containing pointers to the
native functions they invoke. By systematically analyzing these
memory layouts, our approach extracts the corresponding native
function pointers and resolves them to binary symbol names. Com-
bining Python call graphs, native code call graphs and the identified
bridge points, our approach enables reachability analysis across
Python and native code.

We apply our implementation, PyXray, to popular, multi-
language Python packages such as numpy and pytorch. Further-
more, we show how PyXray helps (1) prioritize vulnerability fixes
and (2) detect unused binary dependencies in Python applications
Results: Our results indicate that PyXray achieves 100% recall
in detecting Python-Native bridges across diverse packages, sig-
nificantly outperforming existing static analysis approaches [22].
When applied to vulnerability analysis, PyXray reveals that while
many applications depend on vulnerable packages, only a fraction
(13%) invoke the vulnerable functions. Notably, our findings have
led the developers of 10 clients affected by real-world vulnerabilities
to upgrade their dependencies to safer versions. Our bloat analysis
uncovers that binary components contribute substantially to instal-
lation size (63% on average), with roughly 92% of binary functions
being unreachable from the applications that include them.
Contributions: Our work makes the following contributions:

• A novel and practical dynamic analysis technique that identifies
Python-Native bridges. These bridges enable cross-language call
graph construction and reachability analysis. (Section 3).
• An open-source implementation called PyXray (Section 4).
• A comprehensive evaluation on massive and popular Python
packages, demonstrating PyXray’s effectiveness (Section 5).
• Empirical insights into PyXray’s impact on the Python ecosys-
tem, enabling cross-language reachability analysis for vulnera-
bility management incorporating 35 CVEs [1] and software bloat
quantification for 984 client applications (Section 5).

Availability: PyXray is available as open-source software at https:
//github.com/grgalex/pyxray.

2 Background and Motivation
Terminology: Python follows a design where everything is an ob-
ject, including modules (imported source files), functions, or even
types. An object may contain other object members, which can be
accessed through their name (e.g., obj.x).

Python allows extending its functionality using binary extensions,
which are compiled binary files distributed with a Python package.
These binary files enable programmers to define their own built-in
types and modules, which can be imported by the interpreter just
like typical Python source files. When loaded, they become module
objects containing functions, classes, and other members.

A Python package deployed in PyPI (Python Package Index) is a
collection of Python source files, binary extensions, metadata, and
dependencies. PyPI package distributions contain only the compiled
binaries of their extensions, not the original source code (e.g., C
code). From now on, the term “Python package” refers specifically
to a distributed package in PyPI, rather than a collection of modules
sharing the same namespace [41].
Running example: To motivate and explain the concepts behind
our work, we introduce the code excerpts included in Figure 1,
and use them as a reference throughout the paper. Consider a
Python package called thumbor, which offers thumbnail services.
The package consists solely of Python source files, one of which
is thumbor/utils.py whose (oversimplified) code is shown in
Figure 1a. To implement its functionality, thumbor depends on
another Python package named Pillow, which offers fast image
processing features. As shown in Figure 1b (lines 1–5), the distribu-
tion of Pillow is a mix of of Python source files (PIL/ImgCms.py)
and binary extensions (PIL/_imagingcms.so).

The thumbor package defines the method ensure_srgb, which
processes an image by calling functions from Pillow, including the
constructor of the ImgCmsTransform class (Figure 1a, lines 14–18).
This constructor takes an image and, calls either buildTransform
or buildProofTransform from the _imagingcms module (Fig-
ure 1b, lines 12–16). However, these functions are not imple-
mented in Python; they are written in C. The _imagingcms mod-
ule originates from the shared library _imagingcms.so, which is
compiled from the corresponding C source file (Figure 1c). This
C file defines two functions named cms_build_transform and
cms_build_p_trans (lines 4–9), both of which internally call
cms_transform_new (lines 5, 8). Using the CPython1 API, those
C functions are ultimately exposed as function objects when im-
porting the _imagingcms module from Python (lines 10–13 and
15–20). For example, the C function cms_build_transform is ex-
posed as the function buildTransform in Python (Figure 1b: line
14, Figure 1c: line 11).
Call graph and its applications: Figure 2 shows the unified
call graph for the above example. It consists of two parts: (1) the
Python side (blue frame), which captures all caller-callee relation-
ships within Python source files of thumbor and Pillow, and (2)
the binary side (red frame), which captures function calls within
the binaries (e.g., _imagingcms.so).

There are approaches [14, 28] that build inter-package Python call
graphs, such as the one shown in the blue frame of Figure 2. These
graphs track function calls across package boundaries, such as

1CPython is the standard implementation of Python.

https://github.com/grgalex/pyxray
https://github.com/grgalex/pyxray
https://pypi.org/project/thumbor/
https://pypi.org/project/Pillow
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1 thumbor/

2 |-- __init__.py

3 |-- utils.py

4 |-- ...

5 -------------------------------------------

6 # utils.py

7 from PIL import ImgCms
8
9 def get_profile(icc):
10 # do something with img and return profile

11 ...

12 return profile
13
14 def ensure_srgb(img):
15 prof = get_profile(img)

16 transform = ImgCms.ImgCmsTransform(prof)

17 ...

18 return transform.apply(...)

(a) The thumbor PyPI package, which provides
imaging services.

1 PIL/

2 |-- __init__.py

3 |-- ImgCms.py

4 |-- _imagingcms.so

5 |-- ...

6 -------------------------------------------

7 # ImgCms.py

8 from . import _imagingcms
9 core = _imagingcms

10
11 class ImgCmsTransform:
12 def __init__(self, input, proof=None):
13 if proof is None:
14 core.buildTransform(...)

15 else:
16 core.buildProofTransform(...)

17
18 def apply(self, args):
19 ...

(b) The Pillow libray for image processing.

1 // _imagingcms.c

2 #include "Python.h"
3 static PyObject* cms_transform_new(...) { }
4 static PyObject* cms_build_transform(...) {
5 return cms_transform_new(...);
6 }

7 static PyObject* cms_build_p_trans(...) {
8 return cms_transform_new(...);
9 }

10 static PyMethodDef pyCMSdll_methods[] = {
11 {"buildTransform", cms_build_transform},

12 {"buildProofTransform", cms_build_p_trans},

13 }

14
15 PyObject* PyInit__imagingcms(void) {
16 static PyModuleDef module_def = {
17 .m_name = "_imagingcms",

18 .m_methods = pyCMSdll_methods,

19 };

20 return PyModule_Create(&module_def);
21 }

(c) The C extensions of the Pillow package.

Figure 1: A Python package (thumbor), which depends on another Python library, Pillow. Pillow’s distribution includes a mix
of Python and native code. Calling a function from thumbor triggers the execution of a C function in Pillow (CVE-2024-2819).

Python side

thumbor Pillow

Binary side (_imagingcms.so)

get_profile

ensure_srgb ImgCmsTransform.__init__

ImgCmsTransform.apply _imagingcms.buildTransform

_imagingcms.buildProofTransform

cms_build_transform

cms_build_p_trans

PyInit__imagingcms PyModule_Create

cms_transform_new

Figure 2: Unified call graph for the example of Figure 1.

from thumbor to its dependency Pillow. However, these methods
fail to bridge the gap between Python and native binaries. Their
call graphs stop at functions like _imagingcms.buildTransform
because they analyze only the Python side.

Detecting call edges that connect Python and binary call graphs
is important for many applications, one of which is vulnerability
management. For example, cms_transform_new in Figure 1c is
affected by CVE-2024-2819. A call graph that unifies Python and
native code can determine whether a dependent Python package is
(transitively) affected by this vulnerability. In our example, there is a
call path from thumbor (ensure_srgb) to the vulnerable function
cms_transform_new (gray node in Figure 2). Thus, the developers
of thumbor can use this information to prioritize upgrading to a
safer Pillow version.
Problem statement: Given a Python call graph and a bi-
nary call graph produced by state-of-the-art call graph genera-
tors [35, 44], the goal of this paper is to identify missing edges
that connect them (e.g., red edges in Figure 2). These edges en-
able the construction of a unified call graph (Figure 2). We refer
to these edges as Python-Native bridges (or bridges for simplicity).
A bridge is a triple 𝑘 ∈ Bridge = ⟨𝑛, 𝑠, 𝑏⟩, where 𝑛 is a fully qual-
ified Python identifier, such as _imagingcms.buildTransform,
𝑠 is the name of the native function executed when calling 𝑛 (e.g.,

cms_build_transform), and 𝑏 is the binary file where 𝑠 is defined
(e.g., PIL/_imagingcms.so).
Challenges: One way to solve the bridge identification problem is
to statically extract bridges from source code. For example, a static
analyzer could examine the interactions of the C code in Figure 1c
with the CPython API and determine that cms_build_transform
is the native implementation of the buildTransform Python ob-
ject. Nevertheless, this involves several challenges:

• Miscellaneous implementation languages: Python packages
use various languages for their binary extensions, not just C. For
example, the Python package cryptography is written in Rust.
The numpy package uses Cython (not CPython!) [7], which trans-
lates Python-like code into binary code. A static analysis needs
to reason about all these different implementation languages.
• Binding frameworks: Unlike the example in Figure 1c, Python
packages do not always interact directly with the CPython API
when implementing extension modules. Instead, they rely on
binding frameworks such as PyBind11 [51] and CFFI [43], which
simplify native integration. This makes it challenging for static
analysis to understand how these frameworks ultimately interact
with the CPython API and extract the corresponding bridges.

https://pypi.org/project/thumbor/
https://pypi.org/project/pillow/
https://nvd.nist.gov/vuln/detail/cve-2024-28219
https://nvd.nist.gov/vuln/detail/cve-2024-28219
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1 typedef PyObject *(*CFunction)(PyObject *, PyObject *);
2 typedef struct {
3 // A pointer to the C function that implements the call

4 CFunction ml_meth;

5 } MethodDef;

6 // Implementation of CFunctionObject

7 typedef struct {
8 MethodDef *m_ml;

9 } CFunctionObject;

10 // Implementation of tp_call for CFunctionType

11 static PyObject *
12 cfunction_call(PyObject *func, PyObject *args, PyObject *kwargs) {

13 CFunctionObject *obj = (CFunctionObject *) func;

14 CFunction meth = obj->m_ml->ml_meth;

15 PyObject *result = meth(args, kwargs);

16 return result;
17 }

18 // Implementation of PyCFunctionType

19 typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);

20 typedef struct {
21 size_t tp_size;

22 ternaryfunc tp_call;

23 } TypeObject;

24
25 TypeObject CFunctionType = {

26 sizeof(CFunctionObject), // tp_size
27 cfunction_call // tp_call

28 };

Figure 3: Code snippet from CPython illustrating the imple-
mentation of the callable type CFunctionType.

• Auto-generated source files: Inmany cases, source files written
in languages such as C/C++ are generated automatically at build-
time, complicating static analysis.

3 Approach
We tackle the challenges of bridge identification (Section 2) with
a dynamic analysis that does not require concrete inputs. Our ap-
proach leverages the insight that when a binary extension is im-
ported (e.g., Figure 1b, line 8), all its objects (e.g., functions) are
loaded into memory. By analyzing the memory layout of these
objects, we extract the native functions invoked upon calling the
objects. To crystallize these insights, we first provide technical
background on CPython’s object system and memory layout.

3.1 Technical Background on Callable Objects
Callable objects and callable types: In Python, any object that
can be called like a function using parentheses is considered callable.
There are different types of callable objects, including regular func-
tions defined in code via the def keyword, class methods and con-
structors, or built-in functions like len() or print().

The key factor that determines whether a Python object is a
callable is its type. In CPython, a type is represented internally
as an instance of a C struct known as type object. These type
objects contain various fields that define how their instances behave,
including allocation, instantiation, and deallocation.

A key field in every type object is named tp_call, which is a
function pointer that is executed when an instance is called like a
function. In this context, when a Python object is called, CPython re-
trieves tp_call from its type and executes it. Callable objects orig-
inate from a type object whose tp_call is a valid function pointer,

Table 1: List of CPython callable types along with the objects
they produce. External packages (e.g., numpy) can implement
their own callable types (shown below the mid line). Callable
objects are categorized as internal (I), wrapper (W), and for-
eign (F). The column “Function pointer” specifies the loca-
tion within the callable object’s layout, pointing to the native
function that implements the callable’s behavior.

Callable type Derived callable object Category Function pointer

FunctionType FunctionObject I -
MethodType MethodObject W extract(obj.im_func)
InstanceMethodType InstanceMethodObject W extract(obj.func)
StaticMethodType StaticMethodObject W extract(obj.sm_callable)
GenericAliasType GenericAliasType W extract(obj.origin)
ClassMethodDescrType ClassMethodDescrObject F obj.d_method.ml_method
MethodDescrType MethodDescrObject F obj.d_method.ml_method
ClassMethodDescrType ClassMethodDescrObject F obj.m_ml.ml_meth
MethodWrapper MethodWrapperObject F obj.descr.d_wrapped
WrapperDescrType WrapperDescrObject F obj.d_wrapped
CFunctionType CFunctionObject F obj.m_ml.ml_meth

UFuncType UFuncObject (numpy) F obj.functions
CyFunctionType CyFunctionObject (Cython) F obj.m_ml.ml_meth

while non-callable objects (e.g., modules, integer values) have a
type (e.g., ModuleType, int) where tp_call is NULL. For clarity,
we refer to any type that produces callable objects as a callable type.
Categories of callable objects: We classify callables based on
the behavior of the tp_call function associated with their types.

Internal callable objects: These correspond to callable objects
for which the tp_call function invokes the Python interpreter to
execute the bytecode associated with these objects. Callable objects
of type FunctionType, such as a Python function defined via def
or a lambda, belong to this category.

Foreign callable objects: These are callable objects whose layout
contains a pointer to a native function which is in turn called by
tp_call (to be elaborated in Figure 3). For example, all built-in
functions (e.g., print) are objects whose invocation triggers the
execution of a function implemented in native code (e.g., in C).

Wrapper callable objects: These are callable objects that are wrap-
pers of other callable objects. The behavior of their tp_call is to
invoke the tp_call of the wrapped object. For example, consider
a def function named m defined inside a class A. The callable object
A().m has type MethodType, which is a wrapper of the callable
object m (with type FunctionType) and the receiver object (A()).
Callable types in CPython: CPython implements eleven callable
types that create instances of callable objects. Table 1 categorizes
them as internal (I), foreign (F), or wrapped (W) (ignore the “Func-
tion pointer” column for now). Figure 3 illustrates the implemen-
tation of one of them, that is, CFunctionType. This type object
is used to create foreign callable objects that, when invoked from
Python code, trigger the execution of native functions.

Such callable objects are implemented as instances of the
CFunctionObject struct (Figure 3, lines 7–9). These instances are
created by their type object (i.e., CFunctionType) whose tp_call
field points to function cfunction_call (lines 25–28). Just like
every tp_call function, cfunction_call takes three arguments:
the callable object that is called, along with its positional and key-
word arguments (line 19). When an object of type CFunctionType
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Object Introspection

_imagingcms.so
import (•)

imagingcms

function pointer

memory

cms_build_transform

buildTransform
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o3 buildTransform
Object Layout

introspect (•)
id (•)

resolve (•)

extract (•)

buildProofTransform

cms_build_p_trans
_imagingcms.so 
address space

o4

o5

o6

Figure 4: Object introspection and object layout analysis.

is invoked, CPython executes cfunction_call. This function ex-
amines the structure of the callee CFunctionObject (first argu-
ment of cfunction_call), retrieves the corresponding function
pointer that implements the call (line 14), and executes the under-
lying C function with the provided arguments (line 15).

An example of a foreign callable object of type CFunctionType
is _imagingcms.buildTransform from Figure 1b. Inter-
nally, this function is represented as an instance of the
CFunctionObject struct, which contains a pointer (Fig-
ure 3, line 4) to the native cms_build_transform function.
When _imagingcms.buildTransform is called in Python,
CPython invokes its tp_call function, which in this case
is cfunction_call (Figure 3). This function inspects the
CFunctionObject’s layout, retrieves the function pointer for
cms_build_transform, and executes it.
Key insight: The discussion above leads us to a key observation:
the memory layout of every foreign callable object carries a pointer
to a native function that is executed whenever the callable is invoked
in Python. This raises two questions: (1) How can we access this
function pointer?, and (2) How can we do so systematically for
every foreign callable object in a Python module?

To answer these questions, our approach leverages an impor-
tant insight: when a binary extension is imported all its objects,
including function objects, are loaded into memory. By systemati-
cally analyzing the layout of these objects, we extract the function
pointers and determine the native functions they invoke.

Based on these observations and insights, we design a dynamic
analysis that works as follows. Using Python’s introspection capa-
bilities, our approach exhaustively traverses an imported extension
module, and identifies all callable objects included in it (object in-
trospection step). For each identified callable object, the approach
takes its logical memory address using the built-in Python function
called id(). Since the memory region of foreign callable objects
stores a pointer to the native function that is executed upon the
object invocation (as per our previous observation), our approach
examines the internal structure of the callable object at this address
to locate this function pointer (object layout analysis step). Then, it
resolves the symbol name of the underlying native function.
Approach with an example: Figure 4 illustrates how object
introspection and object layout analysis work together to identify
a bridge from Figure 1. Specifically, it shows how the Python object
buildTransform is linked to the symbol cms_build_transform.

Algorithm 1: Finding C-Python bridges via object intro-
spection
1 fun mod_introspect(𝑏,𝑛, threshold)=
2 obj← import(𝑏 )
3 𝑊 ← [⟨𝑛, obj⟩ ] ∪getLiveObjects( )
4 bridges← ∅
5 while𝑊 ≠ ∅ do
6 ⟨obj_name, obj⟩ ← pop𝑊
7 segs← split(obj_name, “.”)
8 if len(𝑠𝑒𝑔𝑠 ) > threshold then continue
9 obj_type← type(obj)

10 if isCallableType(obj_type) then
11 res← layout_analysis(id(obj) )
12 if res ≠ None then
13 ⟨symbol, bin⟩ ← res
14 bridges← bridges ∪ {⟨obj_name, symbol, bin⟩}
15 for ⟨m_name,m_obj⟩ ∈ dir(obj) do
16 𝑛 ← obj_name + “.” +m_name
17 𝑊 ← push ⟨𝑛,m_obj⟩ to𝑊
18 return bridges

• Step 1. Import binary extension: The binary extension
_imagingcms.so is imported: all of its members (e.g., functions)
are initialized and loaded into memory.
• Step 2. Introspect module and identify callable objects:
recursively traverse the imported module using Python’s intro-
spection abilities and locate foreign callable objects within the
module. There are two callable objects (shown with red bullets
in Figure 4): buildTransform and buildProofTransform.
• Step 3. Extract function pointer from the memory lay-
out of the callable object: take the memory address of the
callable object given by the previous step (buildTransform)
using Python’s built-in function id(). Then, locate the specific
memory slot within the layout of buildTransform where the
function pointer of the callable is stored.
• Step 4. Resolve symbol name: resolve the symbol name of the
function pointer extracted in the previous step. In our example,
this leads to cms_build_transform.

In the following, we provide more details about the process of
object introspection and object layout analysis.

3.2 Identifying Bridges
Identifying binary extensions: Our first step is to determine
whether a Python package contains binary extensions. However,
not all binaries in a Python package are extensions. A valid binary
extension must implement an initialization function following the
pattern PyInit_<module-name> like the one in Figure 1c (lines
15–20). To detect such extensions, the approach employs the nm
Unix utility to analyze all binary files in a package and identify those
containing a symbol that matches the aforementioned pattern. For
example, the binary file PIL/_imagingcms.so initializes a module
named _imagingcms (Figure 1c, line 15). For every identified binary
extension file, our approach applies object introspection.

3.2.1 Object Introspection. Algorithm 1 provides an outline of our
object introspection approach (let us ignore the shadowed lines
for now). The algorithm (1) takes as input a binary extension 𝑏
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that initializes a Python module named 𝑛 (line 1), and (2) returns
a set of bridges. The algorithm begins by importing the given bi-
nary extension 𝑏. This initializes the corresponding module and its
members, and loads them in memory. This import process results
in the creation of a Python object obj that represents the imported
module (line 2). To systematically explore the module’s contents,
the algorithm maintains a worklist𝑊 , which stores pairs of the
form ⟨obj_name, obj⟩. Each pair represents an object that has not
yet been examined by the algorithm, along with the fully-qualified
name of the object. The algorithm iterates through𝑊 and processes
each object until all relevant objects in the module have been ana-
lyzed (lines 5–17). This exploration starts with the imported module
itself, which serves as the root object (line 3).

At each iteration, the algorithm pops an element from𝑊 (line
6) and proceeds as follows. It first examines whether the type of
the popped object is a callable type (lines 9–10) like the ones listed
in Table 1. If so, the algorithm retrieves the memory address of
the object using Python’s id() built-in function and passes this
address to the object layout analysis (more details in Section 3.2.2).
The outcome of this layout analysis is the symbol name of the na-
tive function that is executed upon object invocation, along with
the binary file where the symbol is located. When the result of
object layout analysis is not None (meaning that the callable ob-
ject is implemented via a native function), the algorithm adds the
corresponding bridge to the list (lines 12–14).

Finally, the algorithm updates the worklist by adding all the
children of the current object (lines 15–17). To do so, it leverages
Python’s built-in dir() function, which lists all member objects of a
given object keyed by their names. Notably, before adding a new ob-
ject to𝑊 (line 17), the algorithm constructs its fully-qualified name
by concatenating the parent object’s name with the child object’s
name (line 16). For example, the fully-qualified name of function
object buildTransform is _imagingcms.buildTransform, as it
is a member of a module object named _imagingcms.
Hidden objects: When importing a binary extension, certain
objects might be “hidden”. This refers to objects that are loaded into
memory, but not directly exposed in the module. For example, in
Figure 4, the object o2 exists in memory but is not accessible from
_imagingcms. To deal with hidden objects, we modify Algorithm 1
(line 3) to extend the initial worklist with all live objects in memory,
including those not directly visible from the imported module.
Termination challenges: Algorithm 1 faces termination chal-
lenges that arise from two issues: circular references and ob-
ject cloning. Some objects reference their ancestors, creating cy-
cles that lead to infinite recursion. For example, in Figure 4,
_imagingcms.o6 references its ancestor o1, creating a cycle:
_imagingcms.o1.o4.o6.o1. A possible solution is to track the
memory addresses of the visited objects. However, this fails due
to object cloning. When using dir(), some objects dynamically
create exact clones of their ancestors at fresh memory addresses
instead of referencing existing instances.

To prevent infinite loops, Algorithm 1 introduces a threshold
parameter (line 1) that limits introspection depth. Before analyzing
an object, the algorithm checks the length of its fully qualified
name. If it exceeds the specified threshold, the object is ignored
(line 8). This design decision is based on the observation that deeply
nested callable objects (e.g., a.b.c.d. . . ) are rarely invoked. Our

Algorithm 2: Extracting C function pointer from object
1 fun extract(obj)=
2 obj← cast(obj, PyObject)
3 obj_type← obj.obj_type
4 match obj_type with
5 case FunctionType⇒ return None
6 case MethodType⇒
7 obj = cast(obj, PyMethodObject)
8 return extract(obj.im_func)
9 case CFunctionType⇒
10 obj = cast(obj, PyCFunctionObject)
11 return obj.m_ml.m_meth
12 case . . . ⇒ . . .

evaluation shows that a threshold of 20 effectively analyzes all
relevant objects while ensuring no bridges are missed (Section 5).

3.2.2 Object Layout Analysis. When Algorithm 1 finds a callable
object, it passes its memory address as input to an object layout
analysis (line 11). The result of this analysis is (1) the symbol name
of the foreign function that is executed upon calling the given
callable object, and (2) the binary file where the symbol is defined.
To do so, the object layout analysis follows two steps.
Step 1: function pointer extraction: This step locates the func-
tion pointer within a callable object’s layout, which varies based on
its type. This is because different type objects create instances with
distinct memory structures. For example, in a built-in callable ob-
ject (e.g., CFunctionObject, produced by CFunctionType), the
function pointer is stored in obj.m_ml.ml_meth, where obj is the
callable’s memory address (Figure 3).

We define extract, a function that takes a raw pointer to a
callable object and retrieves a function pointer included in it. Algo-
rithm 2 summarizes its logic. It determines the pointer’s location
based on the object type. If the object is a Python function (e.g.,
FunctionType created by keyword def), it does not have a func-
tion pointer, as CPython executes the function’s bytecode instead
(line 5). In this case, extract returns “None”. If the object is a wrap-
per callable (e.g., MethodType), extract identifies the wrapped
callable and recursively extracts its function pointer (lines 6–8). If
the object is a foreign callable (e.g., CFunctionObject), extract
retrieves the function pointer from its designated memory slot (e.g.,
obj.m_ml.ml_meth, lines 9–11). Note that Algorithm 2 covers only
a subset of CPython’s callable types. For a full reference, see the
“Function pointer” column in Table 1.
Step 2: symbol name resolution: After extracting the function
pointer from the callable object’s layout, the next step is to resolve
its symbol name and binary file. This is straightforwardly achieved
by looking up the symbol table using GDB [18] (details in Section 4).
External callable types: While CPython defines a fixed set of
callable types (Table 1), external Python packages can introduce
custom callable types. To ensure our approach detects bridges, even
if they stem from non-CPython callable objects, we work as follows.

At each iteration, Algorithm 1 checks whether a specific object
is callable using isCallableType (line 10). This function essentially
determines callability based on the layout of the object’s type. In
particular, it retrieves the memory address of the type object via
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Figure 5: Building cross-language call graphs (XLCGs).

id() and, using an object layout analysis similar to Algorithm 2, in-
spects its tp_call field. If tp_call points to a function outside the
Python binary (e.g., /usr/bin/python), the type is considered ex-
ternal. This is because the tp_call implementation is not part
of CPython and therefore unknown. Such external types produce
callable objects beyond those listed in Table 1. When encounter-
ing an object of an unknown callable type, isCallableType issues a
warning for further inspection.

While applying our technique to various Python packages (Sec-
tion 5), we have identified three external callable types, including
UFuncType from numpy and CyFunctionType from Cython (not
CPython!). Table 1 lists their corresponding pointer extraction func-
tions. Adding support for external types ensures the completeness of
our object layout analysis: given an address of a callable object, the
analysis is guaranteed to locate the native function implementation.

3.3 Building Cross-Language Call Graphs
Having introduced our method for identifying bridges (Section 3.2),
we now describe how these bridges are used to construct cross-
language call graphs (XLCGs). Our approach for cross-language call
graph construction is shown in Figure 5. Given a Python package,
we resolve its dependencies, and perform the following steps:
Build Python call graphs: This step generates the Python call
graph for the given Python package and its dependencies using a
state-of-the-art Python call graph generator [44]. This results in
multiple disjoint call graphs: one for each package and dependency.
In the example of Figure 1, this step produces the two call graphs
shown in the individual blue frames of Figure 2. Note these graphs
are disconnected: they lack the dashed edges that connect them.
Build binary call graphs: This step locates binary artifacts within
the given package and its dependencies. For each binary, it employs
a state-of-the-art call graph generator [35] to construct the corre-
sponding call graph. In the example of Figure 1, only the Pillow
dependency includes a binary file (PIL/_imagingcms.so). The
call graph for this binary is shown in Figure 2 (red frame).
Identify Python-Native bridges: This step considers only
those packages in the dependency tree that include binary

extensions. It analyzes each of them as described in Sec-
tion 3.2 to identify the corresponding bridges. In Figure 1,
this step analyzes only Pillow since thumbor does not in-
clude binaries. The result is a set 𝐵 that contains two
bridges: (1) ⟨buildTransform, cms_build_transform, 𝑏⟩, and (2)
⟨buildProofTransform, cms_build_p_trans, 𝑏⟩, where 𝑏 repre-
sents the binary file of Pillow (PIL/_imagingcms.so).
Merge Python and binary call graphs: This step produces the
final XLCG of a Python dependency tree using two key inputs: (1)
the individual Python and binary call graphs generated in previous
steps and (2) the identified bridges. The process consists of two
phases: first, it merges all individual Python call graphs into a uni-
fied Python call graph (blue frame in Figure 2); second, it integrates
the unified Python call graph with the binary call graph using the
identified bridges. To unify the individual Python call graphs, our
approach uses state-of-the-art stitching algorithms [14, 28]. These
algorithms integrate missing edges (e.g., black dashed edges in Fig-
ure 2). However, they do not consider the red edges that link Python
and binary call graphs.

To add these missing red edges, our merging process examines
the leaf nodes in the unified Python call graph and checks if they
match any identified bridges. If a match exists, it connects each
leaf node to its corresponding native function in the binary call
graph (red edges). The result is a XLCG that captures caller-callee
dependencies across Python and native binaries (Figure 2).

For example, in Figure 2, the Python call graph (the graph inside
the blue frame) has four leaf nodes, but only two (marked with
dashed borders) exist in the bridge set 𝐵 (see step above). Our
approach links each of these nodes to its corresponding binary
function, and creates the red edges. For example, buildTransform
in Python is linked to cms_build_transform in the binary.

4 Implementation and Discussion
We implement our approach for bridge identification (Section 3.2)
as a command-line tool called PyXray, which consists of roughly 1k
lines of Python code. The object introspection phase (Section 3.2.1)
is implemented in pure Python using (1) its built-in functions (id(),
dir()), and (2) the gc module to inspect all live Python objects
in memory. No instrumentation is needed for this step. The object
layout analysis is implemented via GDB [18], which PyXray at-
taches to itself and executes specific commands to extract key in-
formation as explained in Section 3.2.2. For example, the GDB com-
mands used to extract the foreign function from any callable object
of type CFunctionType (e.g., _imagingcms.buildTransform in
Figure 1b), are shown below. Here, 0x7f1a634840f0 represents the
memory address of the callable object obtained using id().

1 // cast address of callable

2 addr = (CFunctionObject *) 0x7f1a634840f0

3 fptr = addr->m_ml->m_meth // extract function pointer

4 symbol_info = info symbol fptr // resolve symbol name

Call graph generation: To build call graphs, we employ PyCG [44]
and Ghidra [35]. However, note that our approach for constructing
XLCGs (Figure 5) works regardless of the underlying call graph
generators.
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Limitations and assumptions: The current implementation
of PyXray supports only ELF binaries on Linux distributions. Cer-
tain Python packages may be configured differently depending on
the underlying platform, which can lead to different symbols in
the resulting binary modules. However, PyXray can analyze pack-
ages on other OSes (e.g., Windows, macOS) by installing and run-
ning them on the appropriate platform variants. Extending PyXray
is straightforward: our current GDB-based object layout analysis
can be replaced with similar, platform-specific tools (e.g., image
lookup –address on macOS or dbghelp on Windows)

Furthermore, while its dynamic approach ensures precision (no
false bridges), it may miss bridges in certain cases, leading to false
negatives. First, some callable objects might not be exposed in the
module nor loaded into memory when importing the binary exten-
sion. This occurs when a callable object is dynamically created at
runtime, e.g. within a higher-order function. We have encountered
only two such cases in our evaluation (Section 5.3).

Second, a Python package can programmatically load any
shared library (e.g., libc) with an underlying call to dlopen, us-
ing APIs from Python’s standard library, such as ctypes.CDLL
and ctypes.LoadLibrary. PyXray is not designed to cap-
ture these calls. However, the usage of ctypes.CDLL and
ctypes.LoadLibrary is very rare. Checking their prevalence in
numerous Python packages studied in our evaluation (in particular
Sections 5.3 and 5.4), we find that only 478 out of 17,655 unique
Python call graphs (2.7%) contain calls to either function.

Third, PyXray may miss callable objects of unknown types, i.e.,
types that are not part of CPython (Table 1). However, as discussed
in Section 3.2.2, PyXray issues warnings when encountering un-
known types. Additionally, our approach is extensible (see below),
and enables new callable types to be incorporated when needed.

PyXray assumes that the binary extensions of the analyzed pack-
age are not stripped, meaning their symbols are available. Thank-
fully, most widely used PyPI distributions (e.g., pytorch, numpy)
provide unstripped binaries. In rare cases where the binaries are
stripped, we re-build them with debug symbols enabled. Finally,
because PyXray is a dynamic analysis, it requires installing and
partially executing potentially untrusted code. For this reason, in
certain cases PyXray should be run in isolated environments.
Extensibility and Generalizability: PyXray can be easily ex-
tended to accommodate new callable types. This can be achieved by
adding approximately 10–20 lines of code that extend Algorithm 2
and extract the function pointer from the layout of the external
callable object. Our implementation already supports callable types
that are defined in external packages, such as Cython, and numpy.

PyXray supports only Python-Native bridges. However, it can be
extended to other high-level languages, such as JavaScript. For ex-
ample, Node.js’ N-API [37] supports native addons, where a similar
approach could inspect objects and their layout to identify native
function calls. While this is future work, it represents a promising
direction for expanding PyXray’s capabilities.

5 Evaluation
We evaluate PyXray based on the following research questions:

RQ1 How effective is PyXray in identifying bridges? (Section 5.1)

RQ2 How does PyXray compare to existing approaches? (Sec-
tion 5.2)

RQ3 Can PyXray help security teams with prioritizing vulnera-
bility fixes? (Section 5.3)

RQ4 What percentage of binary-level code included in Python
packages can be considered “bloat”? (Section 5.4)

5.1 RQ1: Effectiveness of PyXray
Setup: We evaluate PyXray’s effectiveness by applying it to PyPI
packages with at least one binary extension. Our benchmark con-
sists of packages from two sources. First, we include four packages
previously analyzed by other bridge-identification approaches [22].
Second, we select six additional packages from the list of most
downloaded PyPI packages [23]. Our final benchmark list contains
well-established Python packages, such as pytorch, numpy, and
cryptography (Table 2).

For each package, we measure the number of native functions
found in binary extensions and exposed as Python callable objects
upon importing these extensions. We also track analysis time and
the total objects examined during the introspection phase (Sec-
tion 3.2.1). We do not compute precision, as PyXray’s dynamic
analysis ensures no false positives: every reported native function
is directly extracted from an object’s memory layout.

We perform this single-threaded experiment on a machine with
a 3.6 GHz processor and 24GB of RAM.
Ground truth: To establish the ground truth, wemanually inspect
the codebase of each package and identify source files (e.g., C, Rust)
that implement binary extensions, while ensuring that no additional
files are dynamically generated at build time. Using this process, we
exhaustively analyze seven out of ten packages. This is because the
remaining packages (i.e., pytorch, numpy, pandas) are quite large
(thousands lines of code), thus, full manual inspection is infeasible.

For these three large packages, instead of fully inspecting their
codebase, we focus on source files that implement binary extensions
without using binding frameworks. Binding frameworks (e.g., CFFI,
Cython) provide a uniformAPI for defining Python-Native bindings,
as they abstract away interactions with the CPython API. This
means that if PyXray correctly captures bridges in one instance of
a framework, it does so for any package that utilizes the framework.
Therefore, for large packages, we only examine source files that
directly interact with the CPython API, without these frameworks
(e.g., as shown in Figure 1c). For pandas, which exclusively uses
Cython, we randomly sample three of its source files.

The ground truth for each package is shown in the column “Na-
tive funcs (Ground truth)” of Table 2. Shadowed rows indicate that
the ground truth is related to the aforementioned subset of source
files. After adding support for external callable types from Cython
and numpy (Section 4), PyXray no longer encounters unknown
callable types when analyzing the benchmarks of Table 2.
Results: Table 2 presents the analysis results of PyXray. In all cases,
PyXray achieves 100% recall, meaning it does not miss any Python-
Native bridges included in the ground truth. Our results validate the
core insight behind PyXray: when a binary extension is imported,
all its function objects are loaded into memory. Therefore, PyXray
can capture all of them, leading to no observed false negatives in
practice, even if they are possible in theory.
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Table 2: Descriptive characteristics of the selected benchmarks and PyXray’s execution results, including recall and execution
time. PyXray is compared against a static analysis tool called Frog [22]. The “Framework” column indicates whether the package
directly interacts with the CPython API (“raw”) or uses a binding framework. Shadowed rows denote cases where “Ground
truth” and “Recall” are based on a subset of source files rather than the full codebase.

PyXray Frog
Package Ext. binaries Frameworks Languages Native funcs

(Gr. truth)
Found Recall (%) Time (s) Objects Callable obj. Foreign callable obj. Found Recall (%) Precision (%)

pytorch 2 raw, Pybind11, CFFI C, C++ 353 7,871 100 107 16.0M 11.4M 477.1K 2,990 37.9 48.3
pyaudio 1 raw C 48 48 100 1 325.7K 207.0K 20.3K 28 58.3 100
python-ldap 1 raw C 29 29 100 4 1.1M 750.9K 68.9K 28 96.5 100
trace-cruncher 3 Cython C, Cython 139 139 100 5 1.1M 724.1K 60.9K 82 61.7 100
numpy 19 raw, Cython,

CFFI
C, Fortran
C++, Cython

421 2,072 100 58 7.9M 4.9M 455.8K - - -

PyYAML 1 Cython Cython 28 28 100 2 802.8K 591.9K 28.6K - - -
PyNaCl 1 CFFI C 214 214 100 1 392.6K 266.3K 19.2K - - -
cryptography 1 PyO3, CFFI Rust 696 696 100 2 435.7K 298.8K 21.7K - - -
pandas 44 Cython C, Cython 146 2,380 100 1087 286.9M 215.6M 11.6M - - -
grpcio 1 Cython Cython 261 261 100 3 1.2M 866.0K 37.0K - - -

Our results further indicate that PyXray is efficient. It analyzes
most packages in less than 5 seconds and handles large packages,
such as numpy and pytorch in under two minutes. The only ex-
ception is the analysis of pandas, which takes approximately 18
minutes. This slowdown occurs because pandas has many depen-
dencies (e.g., scipy, numpy, seaborn, matplotlib), leading to a
significantly higher number of objects being initialized and loaded
into memory when importing its binary extensions. For example,
during object introspection, PyXray examines 286.9 million objects
in pandas, of which 215.6 million are callable objects.

5.2 RQ2: Comparison with Existing Approaches
Setup: We compare PyXray with Frog [22], a static-based ap-
proach for identifying Python-Native bridges. Frog statically an-
alyzes C source files to find interactions with the CPython API
or binding frameworks. Based on this analysis, it extracts bridges,
which are then matched against callee functions identified from
the analysis of Python code. The implementation of Frog is neither
open source nor available to us. Therefore, we compare PyXray
against Frog’s results for the four packages analyzed in its original
paper [22] (Table 2).
Results: Table 2 shows that PyXray outperforms Frog both in
terms of recall and precision. For pytorch, Frog’s precision and
recall was reported by the authors only for a single source file.
Regarding precision: false positives in Frog stem from the fact that
it struggles to distinguish between Python callable objects that
share a common function name, although they are different. For
example, in pytorch, Frog fails to distinguish between the callables
torch.func (where torch is a module) and t.func (where t is
a tensor object). In contrast, PyXray’s dynamic analysis ensures
no false positives, as its object layout analysis is able to tell that
the aforementioned objects are different (they point to different
locations in memory).

Frog’s low recall (avg: 63.6%) is due to its inability to handle di-
verse languages and binding frameworks used in Python packages
(see “Challenges” in Section 2). For example, pytorch relies on
both PyBind11 and CFFI, but Frog only supports PyBind11. Conse-
quently, PyXray identifies 2.6× more bridges in pytorch (PyXray:
7,871 vs. Frog: 2,990). In contrast, PyXray’s dynamic approach
is agnostic to these implementation details. All callable objects

Table 3: Stats for the CVEs for which there is at least one
client in our dataset that depends on the vulnerable package.

CVE Package Vuln. symbol Bridges Clients

Total % vuln. Depend Call Fixed

2020-10177 Pillow ImagingFliDecode 71 1.4 29 0 N/A
2020-35654 Pillow _decodeStrip 71 1.4 29 0 N/A
2020-5311 Pillow expandrow 71 1.4 29 0 N/A
2021-34141 NumPy _convert_from_str 2,072 14.6 204 185 4/4
2021-25290 Pillow _tiffReadProc 71 2.8 29 0 N/A
2022-30595 Pillow ImagingTgaRleDecode 71 1.4 37 0 N/A
2023-25399 SciPy Py_FindObjects 1,203 0.1 122 4 4/4
2024-28219 Pillow cms_transform_new 71 1.4 46 4 3/4

ultimately share the same memory abstractions when loaded, re-
gardless of the underlying binding frameworks and languages.

5.3 RQ3: Prioritizing Vulnerability Fixes
Setup: We demonstrate how PyXray can be leveraged for vulner-
ability management in a realistic setting. Specifically, we use cross-
language reachability analysis in XLCGs to determine whether
Python packages are affected by vulnerabilities in their native de-
pendencies. This information helps security teams prioritize fixes
by identifying which vulnerabilities are actually reachable from
Python code. To do so, we rely on Common Vulnerability Enu-
merations (CVEs) [1]. We obtain CVEs along with the associated
vulnerable (binary) functions from Endor Labs’2 proprietary vul-
nerability database. We share the curated dataset as part of our
replication package. In the following, we explain our setup.

Construction of XLCGs: We use the dataset from the work
of Drosos et al. [14], which contains 1,302 Python applications from
GitHub. From these, we consider 984 that have a corresponding PyPI
release, and construct their corresponding XLCGs (Section 3.3).

Identification of CVEs: We identify CVEs that affect popular
Python packages. Then we keep only entries that incorporate vul-
nerable functions (i.e., symbols) that reside in binary components
of the package.

Reachability of vulnerable symbol: We assess the reachability of
vulnerable symbols in both internal and external contexts. Internally,
for the vulnerable package, we check if PyXray captures at least
one bridge whose native function ultimately reaches the vulnerable
symbol. Externally, we determine the extent to which clients from

2https://www.endorlabs.com/



PR
EP
RIN

T

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil G. Alexopoulos, T. Sotiropoulos, G. Gousios, Z. Su, and D. Mitropoulos

the set of 984 depend on vulnerable packages and simultaneously
invoke vulnerable symbols, using the XLCGs of clients.

Overall, we obtain a dataset of (1) 35 CVEs and (2) 984 XLCGs
for all applications (clients) in the original dataset.
Results: Out of the 35 CVEs, PyXray is able to discover bridges
for 30 of them. For the remaining five cases: (1) the analyzed pack-
age is Windows-only (one case), (2) the foreign callable objects are
created only after calling a specific function (two cases), and (3)
the Python code programmatically loads the library, and calls its
symbols, side-stepping Python’s extension mechanism (two cases);
currently PyXray is not designed to handle such cases (see “Limi-
tations“ in Section 4).

Out of the 30 CVEs, only 8 CVEs are related to vulnerable pack-
ages which in turn are dependencies for at least one of our 984
analyzed client applications. Table 3 summarizes the results for
these 8 CVEs. Overall, PyXray unearths significant information for
the developers of (1) vulnerable packages and (2) client applications
relying on them, i.e., helps them efficiently estimate the impact of
vulnerabilities and prioritize fixes as we discuss below.
Package developers: As shown in the column “Bridges”, PyXray
reports the number of identified bridges (“Total”) in the vulnerable
package, and the percentage that leads to vulnerable code execution
(those reaching the vulnerable symbol).When discovering a bug in a
native function (before its fix or possible CVE assignment), package
developers can use PyXray to estimate the number of transitively
affected client applications. This way, they can prioritize fixing and
backporting bugs with higher reachability from Python callable
objects. For example, in CVE-2021-25290 (numpy), the vulnerable
function is reachable by 14.8% of the native functions exposed as
objects in Python. In contrast, for CVE-2023-25399, only 0.1% of
the scipy foreign callable objects lead to the vulnerable symbol.
Developers of client applications: The practical effect of this
prioritization can be better seen in our analysis of client applica-
tions from our dataset. While many applications depend on vul-
nerable package versions (“Depends” column), only a few actually
call the vulnerable native functions (“Calls” column). For example,
although 122 clients depend on the vulnerable version of scipy,
only four of them call the vulnerable function.

Across all analyzed CVEs, only three have at least one client
where the vulnerable function is reachable. Our fine-grained reach-
ability analysis reveals that a Pillow and a scipy CVE affect four
clients each, while a numpy vulnerability impacts 185 clients. This
discrepancy is due to the centrality of numpy’s vulnerable function
within its API. Since 14.8% of its bridges lead to the vulnerable
function, client applications are far more likely to invoke a numpy
function that ultimately triggers the vulnerability.
Reporting issues: For each of the three CVEs, we submitted
bug reports to four client applications transitively affected by the
vulnerability. Each report included a recommended fix, suggesting
an update to a safer dependency version. For example, in Figure 1,
we advised thumbor to upgrade its Pillow dependency to a safer
version. Overall, 11 / 12 issues have already been fixed as of now.

5.4 RQ4: Binary bloat in PyPI
The subject of bloated dependency code (or bloated code for
short) [48] has attracted considerable research attention recently.

Table 4: Bloat metrics for the 716 / 984 applications that have
at least one dependency containing a binary extension.

Domain Granularity Statistical Measures

5% Mean Median 95% Hist.

Python

Size 0.83 MB 19.96 MB 8.83 MB 73.62 MB

Package (%) 0.00 48.98 50.00 86.67

File (%) 71.74 87.54 89.38 98.38

Function (%) 88.22 95.52 96.28 99.58

Binary

Size 0.20 MB 53.13 MB 12.66 MB 193.59 MB

File (%) 6.71 67.41 66.67 100.00

Function (%) 67.51 92.26 100.00 100.00

Total

Size 1.38 MB 74.91 MB 21.70 MB 261.88 MB

File (%) 31.42 70.70 73.18 98.89

Function (%) 77.60 91.89 93.63 99.72

Bloated dependency code refers to the unused code that is incor-
porated into a software application through its dependencies. Past
efforts [14] are confined to measuring bloat only at Python level. In
this research question, we show how PyXray enables us to quantify
bloated dependency code by taking into account both the Python
and binary components of an application.
Setup: We reuse the 984 client applications and their XLCGs from
RQ3, all of which are part of the recent study on bloated depen-
dency code in PyPI [14]. First, we analyze the dependency tree
of each client. Then, we identify binary files in the dependency
tree and determine how many of their symbols are reachable from
the client’s Python functions. Unreachable symbols are marked as
“bloated”. If an entire binary file has no reachable symbols, it is also
considered bloated. Based on these definitions, we quantify binary
bloat using two granularities: binary files, and binary functions.

Table 4 presents the findings of our bloat analysis. Out of the 984
client applications, 716 of them have at least one dependency con-
taining a binary extension. We now use the term “Python domain”
to refer to bloat in pure Python code (.py), and “Binary domain”
to refer to bloat in binary code (.so).
Binary bloat (file granularity): Overall, two thirds (67%) of
binary files from an application’s dependencies are entirely unused.
Compared to the Python domain (file granularity), fewer binary
files are bloated. This could be attributed to the fact that binary files
generally contain more functions per file since they are compiled
and linked from multiple source files.

To reduce installation size, we could take different measures
based on the nature of the bloated binary file. If the bloated binary
is an extension module, it could be replaced with a stub that only
implements its initialization function (PyInit_<module-name>,
Section 3.2). Otherwise, it could be removed entirely. This approach
can reduce installation size by ~36MB, on average.
Binary bloat (function granularity): PyXray ’s features enables
us to measure bloat at function granularity. On average, only 7.7%
of functions in dependency binaries are used. To reduce installation
size, one can apply binary debloating techniques [4], thus keeping
only the reachable functions. Notably, for clients of exceedingly
large packages, such as pytorch (1.4GB binary size), the average
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bloated size is 943.7MB at the file level and 1.29GB at function level.
In these cases, the need for active debloating is even more apparent.
Combining Python and binary bloat: PyXray allows us to
compute the overall bloat by taking into account both the Python
and the binary domains. Our results show that, on average, binary
files make up 63% of a package’s installed artifacts, contributing
2.3×more to the final installation size than Python files. The average
Python package, including its dependencies, occupies 73.1MB, with
a significant portion classified as bloat. At the package level, 37.8MB
is bloated; at the file level, 44.0MB; and at the function level, 67.5MB.

5.5 Threats to Validity
The ground truth for RQ1 (Section 5.1) is constructed manually.
While minor human error is possible, we aim for completeness by
examining every native function across all source files (or repre-
sentative subsets for large packages such as numpy). This process
ensures that PyXray does not systematically miss any callable
type listed in Table 1. In contrast, alternative approaches, such as
providing the Python package with test inputs and dynamically
tracking the flow from Python to native code, cannot guarantee
full or sufficient coverage.

RQ3 and RQ4 (Sections 5.3 and 5.4) combine PyXray with exist-
ing call graph generators (PyCG and Ghidra) to construct XLCGs.
We acknowledge that these tools may introduce false positives
or negatives, potentially affecting the precision and recall of the
resulting XLCGs. However, PyXray does not aim to address the
broader challenge of call graph construction for individual lan-
guages. PyXray’s contribution lies in identifying bridges between
two call graphs, one for Python and one for binaries. RQ3 and RQ4
therefore highlight the applications of our work rather than evalu-
ating the precision and recall of XLCGs. Other call graph generators
can be easily integrated into the pipeline for building XLCGs.

6 Related Work
Cross-language analyses: The closest work to PyXray is
Frog [22] and Charon [45]. We discuss Frog in detail in Sec-
tion 5.2. Charon [45] uses code property graphs [52] to statically
identify bridges by analyzing C source files for calls that inter-
act with the CPython API. We attempted to run Charon on the
benchmarks listed in Table 2 but were unsuccessful due unexpected
errors raised by the tool. Even if it had run Charon successfully,
we would expect results similar to Frog, since Charon can only
detect bridges created directly through the CPython API and not
via binding frameworks.

Most research on Python-C interactions focuses on static analysis
frameworks for detecting errors, such as arithmetic overflows and
type errors across Python-C boundaries. These frameworks rely
on either abstract interpretation [13, 34] or declarative analysis
(e.g., CodeQL) [53]. On the dynamic front, PolyCruise applies
dynamic information flow analysis to detect vulnerabilities (e.g.,
buffer overflows) in Python packages with native extensions. Unlike
our work, it requires concrete execution inputs.

Beyond Python-C, prior work explores static, cross-language
analysis in Android [6, 10, 30], Node.js [9], and Java Native Interface
(JNI) [17, 31, 38]. In contrast, PyXray takes a dynamic approach
without relying on source code availability. Future work includes

extending PyXray to other interpreted languages (e.g., JavaScript)
that interact with binary artifacts.
Call graph construction: There are numerous tools for con-
structing call graphs in statically-typed languages, including
doop [8], wala [16], opal [42], soot for Java [50], and Coral [12],
PhaSAR [46], Kelp [11] for C. For binaries, the reverse engineering
frameworks Ghidra [35], Radare2 [3], and IDA Pro [2] provide tools
for call graph generation and analysis.

Focusing on dynamic languages, prior work includes Python call
graph generators [44, 56] that deal with complicated features, such
as multiple inheritance and higher-order functions. In JavaScript,
Feldthaus et al. [15] propose a flow-based analysis for unsound but
accurate call graphs, while Nielsen et al. [36] present a modular
approach for Node.js, incorporating package management internals
for vulnerability analysis.

All this work is orthogonal to our contributions: our approach for
building cross-language call graphs (Section 3.3) allows the seamless
integration of different Python and binary call graph generators.
Software ecosystem analysis: Hejderup et al. [21] propose us-
ing call graphs to map software ecosystems’ calling relationships.
Expanding on this, Mir et al. [33] analyze the Maven ecosystem,
finding that while one-third of packages have vulnerable transitive
dependencies, only 1% invoke a vulnerable method. Drosos et al.
[14] examine bloated dependency code in PyPI. However, their
analysis considers bloat only in Python files. Recent research has
focused on security issues within scripting language ecosystems,
particularly software supply-chain vulnerabilities. Alfadel et al. [5]
show that vulnerabilities in PyPI packages often remain undetected
for years. In the JavaScript ecosystem, Zahan et al. [54] analyze
metadata from 1.6 million packages, identifying metrics that signal
supply chain risks.

These software ecosystem analyses can benefit from PyXray by
integrating both high-level (Python) and low-level (binary) code.
Sections 5.3 and 5.4 already demonstrate how PyXray enables cross-
language reachability analyses in PyPI.

7 Conclusion
We presented PyXray, a practical tool for discovering the native
function implementations of Python callable objects in PyPI pack-
ages with binary extensions. PyXray leverages a novel dynamic
analysis, based on the key insight that when a binary extension is
imported, all its callable objects (functions) are loaded into memory,
embedding pointers to the native functions they invoke. By system-
atically analyzing these layouts, PyXray extracts the corresponding
function pointers, and resolves them to the callee native functions.
Linking Python callable objects with their native implementation
enables cross-language call graphs for Python packages.

Our experiments demonstrate that PyXray is both efficient
and effective, as it analyzes large packages, such as numpy and
pytorch in minutes. Compared to existing static analysis ap-
proaches, PyXray achieves higher precision and recall. Further-
more, PyXray enables advanced cross-language reachability analy-
ses in the PyPI ecosystem, particularly in vulnerability management
and dependency bloat analysis.
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