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Abstract—Dependency bloat is a persistent challenge in Python
projects, which increases maintenance costs and security risks.
While numerous tools exist for detecting unused dependencies
in Python, removing these dependencies across the source code
and configuration files of a project requires manual effort and
expertise. To tackle this challenge we introduce PYTRIM, an
end-to-end system to automate this process. PYTRIM eliminates
unused imports and package declarations across a variety of
file types, including Python source and configuration files such
as requirements.txt, and setup.py. PYTRIM’s modular design
makes it agnostic to the source of dependency bloat infor-
mation, enabling integration with any detection tool. Beyond
its contribution when it comes to automation, PYTRIM also
incorporates a novel dynamic analysis component that improves
dependency detection recall. Our evaluation of PYTRIM’s end-
to-end effectiveness on a ground-truth dataset of 37 merged
pull requests from prior work, shows that PYTRIM achieves
98.3% accuracy in replicating human-made changes. To show its
practical impact, we run PYTRIM on 971 open-source packages,
identifying and trimming bloated dependencies in 39 of them. For
each case, we submit a corresponding pull request, 6 of which
have already been accepted and merged. PYTRIM is available as
an open-source project, encouraging community contributions
and further development.

Video demonstration: https://youtu.be/LqTEdOUbJRI

Code repository: https://github.com/TrimTeam/PyTrim

I. INTRODUCTION

Python has emerged as one of the most widely adopted
programming languages globally [1], [2] partly due to its large
ecosystem of third-party packages, with the Python Package
Index (PyPI) — currently hosting over 654,000 projects [3].
While these packages accelerate development and foster reuse
they also contribute to a notable software engineering chal-
lenge: dependency bloat. As projects evolve, obsolete depen-
dencies are often left in the codebase. This creates technical
debt, which in turn leads to increased maintenance overhead,
expanded attack surface, and slower pipelines [4]-[7].

Consider a real-world example from the softlayer-python
project [8]. In a commit from May 2022, developers refactored
the command-line interface to use the rich library, replacing
the older prettytable library. While all source code usages
of prettytable were removed, the dependency declaration
itself was left behind in four configuration files, two of
them shown in Fig. 1: (1a) setup.py, which defines package
metadata and installation configuration for a Python project,
and (1b) tools/requirements.txt, which lists the Python
dependencies needed for the project’s tooling components.

1 install_requires = [

2 'prettytable’,

3 . 1
4 'rich==14.0.0", 2
5] 3

prettytable
rich==14.0.0

(a) setup.py (b) tools/requirements. txt

Fig. 1: Two of the four configuration files of the softlayer-
python package. Its prettytable dependency has been un-
used since commit 1238377 [8].

The Python ecosystem provides numerous open-source tools
that focus on bloat detection. Some of these tools operate at the
file level, identifying unused imports within individual Python
files [9], [10]. Others operate at the project level, looking for
unused package dependencies by comparing configuration files
against the imports used in the source code [11], [12]. While
valuable for detection, these tools do not provide a removal
solution.

Contributions: We present PYTRIM, which introduces:

« An end-to-end pipeline for the detection and removal
of unused dependencies from Python projects, including
integration with three existing detection tools.

e A novel and practical dynamic analysis technique for
calculating a project’s dependencies, which it uses to
enhance the static-based approaches of integrated bloat
detection tools.

« Removal logic for dependency declarations from a wide
array of file formats, including Python source files,
requirements files, TOML (Tom’s Obvious, Minimal
Language) [13] configurations, and setup.py files.

o Automation of the maintenance lifecycle by creating a
new Git branch, committing the changes, and generating
a pull request with a detailed report, enabling a “review-
and-merge” approach to dependency cleanup.

II. BACKGROUND & MOTIVATION

For the remainder of this paper, we use the term configura-
tion files to refer to auxiliary files that declare a package’s
dependencies or define its installation behavior. Such files
include requirements. txt, pyproject.toml, and setup.py.
Accordingly, we use the term source files to refer to source
code files that implement the main functionality of a package.
Finally, we use the term project to refer to the source code
(usually published on GitHub) of a corresponding Python
package, which is in turn published on PyPIL.
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f = open('regs/core.txt")
REQS = f.read().splitlines()

N

. 1 pyrsistent>=0.16.0
install_requires = REQS 2

(a) setup.py (b) regs/core. txt

Fig. 2: optimizely-sdk builds its dependencies dynamically,
causing static analysis-based detectors to miss its pyrsistent
dependency and fail to identify it as unused.

We define a dependency package as unused (or bloat) if it
is declared in the project’s configuration files but is not used
anywhere in the project beyond, at most, a direct import. While
we acknowledge that importing a package causes Python to
implicitly execute its __init _ .py file [14], which could be
part of the program logic, we encounter no such cases during
our evaluation.

To detect unused dependencies such as the prettytable
dependency in softlayer-python from Fig. 1, developers
must run a dependency bloat detection tool, such as fawl-
tydeps [11], on the package’s source code and manually ex-
amine the tool’s output to identify bloated dependencies. Note
that the process of detecting unused dependencies comprises
two distinct phases: (i) computing the set of the package’s
dependencies, and (ii) determining the extent to which each
of them is used.

Once unused dependencies are identified, developers must
undertake a manual removal process that involves removing
dependency declarations from configuration files and imports
from Python files, and finally submitting a pull request to
fix the problem. This remediation workflow requires careful
attention to ensure that all references to the unused dependency
are properly eliminated from the codebase without affecting
the package’s functionality.

Challenge 1: Project dependency resolution: To compute
the dependency set, existing detection tools rely on static anal-
yses of configuration files. While tools such as fawltydeps,
correctly parse standard configuration files such as the ones
depicted in Fig. 1, they fail when dependencies are program-
matically constructed. For example, in the optimizely-sdk
package (Fig. 2), the setup.py file dynamically builds the
install requires list by reading an external file, making
static analysis approximation difficult and causing missed de-
pendencies. Given that over 50% of PyPI packages published
in April 2024 [15] use setup.py as their configuration file, the
practical approximation of its behavior has become essential.

Challenge 2: Multitude of configuration files and types: To
remove dependency declarations developers have to search for
and edit all related configuration files (e.g. all four aforemen-
tioned configuration files in the case of softlayer-python).
Notable, open-source projects have previously encountered
issues [16] with partial updates of configuration files, leading
to broken builds.

Challenge 3: Human error: While valuable for detection,
existing tools do not provide a removal solution. That is, de-
velopers have to perform the remediation workflow manually,
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Fig. 3: High-level architecture of PYTRIM.

making the procedure prone to human error. This gap between
detection and remediation represents a bottleneck in automated
software maintenance.

III. PYTRIM
A. Overview

PYTRIM receives as input the path to a Python project and
then proceeds to (a) dynamically infer the project’s depen-
dencies by installing it in isolation (b) identify the subset
of unused dependencies by invoking an unused dependency
detector, and (c) locate and remove their occurrences (decla-
rations and imports) across a wide range of file formats. Its
design is detector-agnostic, allowing any dependency analysis
tool to be integrated.

B. System Architecture

PYTRIM incorporates three primary modules:

« Dynamic dependency resolver: A component that gen-
erates a list of dependencies based on install-time infor-
mation.

o Detector: An external dependency analysis tool (e.g.,
extended PyCG [17]) to determine which dependencies
are unused.

« Remover: A component that implements file-specific
logic to locate and remove unused dependency oc-
curences (declarations and imports).

The interaction between these modules and the overall work-
flow is shown in Fig. 3.

Dynamic dependency resolver: To address Challenge 1, we
perform a source installation of the project under analysis
by invoking pip with the “-t” argument, to install artifacts
in an isolated environment. This is a dynamic operation,
meaning that it yields no false positives, while at the same time
requires no inputs. This step is inspired by recent work that
has been introduced to support cross-language call-graph con-
struction [18]. Then, we utilize the pipdeptree [19] utility to
produce a directed graph representation of installed packages
in this environment, where an edge from x to y denotes that x



depends on y. The package under analysis is the vertex with
no incoming edges, and its dependencies are the destinations
of its outgoing edges. In this manner, we dynamically obtain
a list of the project’s dependencies. A current limitation of
our approach is that it only considers the default installation
options, and thus only follows one concrete execution path in
the configuration file.

Detector: As a default, PYTRIM utilizes a call-graph based
detector [17]. It also provides out-of-the-box support for two
other popular detectors, namely fawltydeps [11] and dep-
try [12]. We modify each detector’s dependency resolution
component to take into account the union of its built-in
static dependency resolver and PYTRIM’s dynamic dependency
resolver, to decrease missed dependencies.

Remover: To address Challenge 2 we follow a two-fold
approach. For Python source files (.py), PYTRIM employs
Abstract Syntax Tree (AST) analysis to identify and remove
unused imports. For configuration files, it uses a combination
of methods based on file type: structured file types such as
TOML, YAML, and INI/CFG are managed by parsing libraries
such as toml, PyYAML, and configparser; line-based formats
including requirements.txt and their common .in coun-
terparts are handled with regular expressions; and executable
setup.py files are processed via AST analysis.

To ensure dependency integrity after these modifications,
PYTRIM identifies when a lock file (e.g., poetry.lock) may
be out of sync and prints a message to inform the user to
regenerate it manually, as automatic regeneration could be
unsafe due to project-specific versioning or hashes. Similarly,
less structured files like shell scripts or Dockerfiles, are only
analyzed for reporting and are not modified automatically due
to their inherent complexity and risk of reliably altering their
syntax programmatically.

C. Implementation and Usage

PYTRIM is implemented in ~4,200 lines of Python code and
is provided as a command-line tool, installable from PyPI via
pip install pytrimand accessible via the pytrim command.
Apart from end-to-end automated analysis (Challenge 3), it
can also work in removal-only mode, bypassing its built-
in detectors, accepting the list of unused packages as input
alongside the project’s path. Further, PYTRIM can also generate
markdown reports and pull requests.

IV. EVALUATION
A. Dynamic Dependency Resolution

We compare PYTRIM’s dependency resolver with the static
resolvers employed by the three integrated detection tools, to
quantify the missed dependencies it helps uncover. To this end,
we evaluate each resolver on a dataset of 1300 popular GitHub
projects studied in previous work [17]. From these, we only
keep a subset of 971 packages that are successfully installed.
Compared to the static resolvers, the dynamic resolver is able
to uncover missed dependencies in 48/971 (5%) of cases. The
main causes for the static resolvers’ misses are: (a) parsing

TABLE I: PYTRIM’s replication accuracy on manually created
PRs from previous work [17].

Metric Value
Total Pull Requests Analyzed 37
Total Files with Dependency Changes 76
Files Excluded (e.g., Documentation) 16
Relevant Files for Comparison 60
Files Correctly Replicated by PYTRIM 59
Files with Mismatched Output 1
Replication Accuracy 98.33%

limitations for edge-cases of supported declarative files, such
as pyproject.toml (18 cases), (b) arbitrary setup.py code,
such as function invocations (22 cases), and (c) miscellaneous
bugs (8 cases). For example, the dependency of optimizely-
sdk on pyrsistent, shown in Fig. 2, is detected only through
our dynamic resolution technique.

B. Remover effectiveness

To validate PYTRIM’s effectiveness, we design an automated
pipeline to measure its accuracy against real-world software
maintenance tasks. As a ground truth, we use the dataset from
Drosos et al. [17], which provides a curated set of pull requests
(PRs) where bloated dependencies were manually removed
from open-source Python projects.

The ground truth for each PR consists of two parts: the list
of dependencies the developer removed, and the final, correct
state, of the modified files. Our pipeline first runs PYTRIM
on the pre-PR version of each project, providing the ground-
truth list of dependencies as input. It then compares the files
modified by PYTRIM against the ground-truth files to measure
replication accuracy, ignoring non-semantic differences such
as changes in white space or comments.

The results of our analysis are summarized in Table I.
Out of 60 relevant files where dependencies were removed,
PYTRIM successfully matches the final state of 59, achieving
a replication accuracy of 98.33%. It is also efficient; when
provided with the pre-computed list of unused dependencies,
it processes the entire evaluation dataset of 37 projects in less
than 10 seconds.

The only mismatch occurred in a PR [20] on simple-
salesforce, revealing a limitation of PYTRIM’s scope: depen-
dency refactoring. While PYTRIM correctly removed cryp-
tography, the human developer also refactored pyjwt into
pyjwtlcrypto], to include optional cryptographic features.
Such semantic changes require domain-specific knowledge and
are currently out of scope for PYTRIM, which focuses solely
on removing unused dependencies, not refactoring them.

C. Real-World Deployment

To evaluate PYTRIM’s practical applicability, we deploy it
on the 971 installable open-source Python projects studied in
previous work [17]. For each project, we run PYTRIM using
the call-graph-based detector to identify unused dependencies.
Then, we manually verify all changes and submit pull requests
to the respective repositories.



TABLE II: Merged pull requests contributed by PYTRIM.

Project PR ID Files Modified
pytroll/pyresample #669 1
furlongm/patchman #689 1
pycqa/prospector #781 2
jamesoff/simplemonitor #1646 4
softlayer/softlayer-python #2230 5
napalm-automation/napalm #2243 1

PYTRIM removes unused dependencies in 39 projects, re-
sulting in 39 submitted pull requests. At the time of writing, 6
of these PRs have been merged by the project maintainers, 29
are still under review, and 4 were closed due to project-specific
policies.

As an example consider the softlayer-python project
(Fig. 1). PYTRIM correctly identified that the prettytable
dependency is unused. Then, it generated a PR to remove the
dependency from four configuration files (setup.py and three
separate requirements. txt files). PYTRIM also identified the
unused package name in the README.rst file and correctly
flagged it for manual review. The resulting PR, with the
manual edit for the README, was merged by the project
maintainers. All merged PRs are summarized in Table II.

Notably, bloated dependencies in edx/edx-lint and
optimizely/python-sdk (Fig. 2) would have gone unde-
tected without PYTRIM, as existing detectors fail to accurately
identify their dependencies.

V. RELATED WORK

While software debloating is a broad research area, this
section focuses on work most directly related to Python
dependency analysis. For comprehensive surveys of debloating
techniques in other ecosystems, we refer readers to Drosos et
al. [17] and the Systematization of Knowledge (SoK) work by
Alhanahnah et al. [21]. Most relevant to our work is Drosos
et al. [17], who conducted a large-scale study on dependency
bloat in the Python ecosystem and established a methodology
for identifying unused dependencies through fine-grained call
graph analysis using the PyCG static call graph generator [22].
This research provides the foundational understanding of the
problem space that PYTRIM builds upon.

Existing Python tools focus primarily on detection and can
be broadly categorized into two groups. The first consists of
source code linters, such as autoflake [9] and pylint [10],
that identify unused imports directly within .py files. While
some of these, such as autoflake, can remove the identified
import lines, their scope is strictly limited to the source
code; they do not modify project-level configuration files.
The second group operates at the project level; tools such as
deptry [12], and FawltyDeps [11] compare declared depen-
dencies against source code imports to find unused packages,
but they do not automate the removal of the corresponding
import statements.

VI. CONCLUSION

We presented PYTRIM, a system for end-to-end removal of
unused dependencies and imports. We outlined its detector-

agnostic architecture, its novel dynamic dependency resolution
technique, and its support for a wide range of configura-
tion formats. Our evaluation demonstrates its effectiveness
in uncovering previously undetectable dependency bloat and
automatically removing it.
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