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ABSTRACT
GPUs are essential for accelerating Machine Learning (ML) work-
loads. A common practice is deploying ML jobs as containers man-
aged by an orchestrator such as Kubernetes. Kubernetes schedules
GPU workloads by exclusively assigning a device to a single job,
which leads to massive GPU underutilization, especially for inter-
active development jobs with significant idle periods. Current GPU
sharing approaches assign a fraction of GPU memory to each co-
located job to avoid memory contention and out-of-memory errors.
However, this is impractical, as it requires a priori knowledge of
memory usage and does not fully address GPU underutilization.
We propose nvshare, which transparently enables page faults (i.e.,
exceptions that are raised when an entity attempts to access a
resource) to allow virtual GPU memory oversubscription. In this
way we permit each application to utilize the entire physical GPU
memory (Video RAM). To prevent thrashing (a situation in which
page faults dominate execution time) in a reliable manner, nvshare
serializes overlapping GPU bursts from different applications. We
compared nvshare with KubeShare, a state-of-the-art GPU shar-
ing solution. Our results indicate that both perform equally well
in conventional sharing cases where total GPU memory usage
fits into VRAM. For memory oversubscription scenarios, which
KubeShare does not support, nvshare outperforms the sequential
execution baseline by up to 1.35x. A video of nvshare is available
at https://www.youtube.com/watch?v=9n-5sc5AICY

CCS CONCEPTS
• Computer systems organization → Cloud computing; • Com-
puting methodologies→Graphics processors; • Software and
its engineering → Multiprocessing / multiprogramming /
multitasking.
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1 INTRODUCTION
Graphics Processing Units (GPUs) are essential for accelerating Ma-
chine Learning (ML) workloads [18, 21] which include throughput-
intensive model training, latency-sensitive inference, and interac-
tive development (e.g., as done in Jupyter Notebooks [11]).

GPUs currently offer no way to limit the per-process VRAM
consumption, which can lead to Out-of-Memory (OOM) errors
when co-locating applications. To avoid this inter-job interference,
container orchestrators such as Kubernetes[5] and Slurm [13] opt
to schedule GPU workloads by assigning a whole device to a single
job in an exclusive fashion. This one-to-one relationship leads to
GPU underutilization, especially for workloads with significant idle
periods (e.g. during code refactoring in interactive development
tasks) and bursts of heavy GPU usage.

There are several GPU sharing solutions that attempt to address
the aforementioned challenge. A number of proposed methods
ignore the memory contention issue [8, 14–16], warning users of
potential fatal OOM errors. Other methods assign a fixed subset of
GPU memory to each job [4, 7, 29], requiring prior knowledge of
peak memory usage. However, such approaches suffer from GPU
underutilization. Finally, there are solutions that permit each job
to use the entire VRAM through paging [27]. Nevertheless, such
cases apply to specific ML training jobs and suffer from thrashing,
i.e., excessive page faults.

We present nvshare, a GPU sharing mechanism that transpar-
ently enables GPU page faults to allow virtual GPU memory over-
subscription. As a result, every co-located application can utilize
the entire physical GPU memory (VRAM). In addition, our mech-
anism serializes overlapping bursts of computations on the GPU
to prevent thrashing. Under nvshare, each application runs in its
own context, with guaranteed fault isolation and security. Finally,
it is application-agnostic as it works at the GPU API layer.

To evaluate nvshare, we integrate it with Kubernetes and com-
pare it against KubeShare [29], a state-of-the-art approach with
positive results. Furthermore, we show that even for GPU-intensive
workloadswhose combinedGPUmemory allocations exceed VRAM
capacity (and which KubeShare cannot handle), nvshare offers a
1.35x speedup when compared to the standard sequential execution.

We have released our mechanism as open-source software, avail-
able at https://github.com/grgalex/nvshare. Notably, it has attracted
interest from both research [1, 10] and industrial environments [9].

2 BACKGROUND AND MOTIVATION
CUDA. Compute Unified Device Architecture (CUDA) [2] is a
well-established platform and API that enables general-purpose
computing on NVIDIA GPUs. CUDA is designed to work with
different programming languages such as Python and C++. Through
its API, CUDA provides access to the GPU’s virtual instruction
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Figure 1: The nvshare architecture. In this snapshot, client 1 is about to evict a page from client 2 who is waiting to use the GPU.

set and computational elements. A CUDA program consists of a
mixture of host code, which runs on the CPU and device code,
which in turn runs on the GPU.

CUDA Context. A CUDA context is the GPU equivalent of a
CPU process. To utilize a GPU, an application creates a context
and issues corresponding commands (e.g., memory allocations and
computations). Each context has its own set of page tables (virtual
address space) and cannot access another context’s memory. While
multiple contexts exist concurrently on the same GPU, only one
can execute work at a given moment. The black-box CUDA driver
time-slices contexts running on the same GPU in an undisclosed
manner. This time slice is in the order of a few milliseconds.

The standardway of allocatingGPUmemory is through amethod
named cuMemAlloc. Every byte of virtual memory allocated in this
manner, must be backed by a byte of physical memory. An impli-
cation of this concept is that the sum of GPU memory allocations
across all contexts can at most be equal to the physical GPU mem-
ory size. For example, in the case of a 16GB GPU memory, if one
process allocates 10GB, then another one can at most allocate 6GB
of GPUmemory without getting a fatal OOM error. CUDA offers no
way to limit the size of per-context memory allocations. Note that
it is not possible to know the peak GPU memory use of every ap-
plication a priori. As a result, orchestrators such as Kubernetes [5]
and Slurm [13] address the threat of OOM errors by enforcing a
one-to-one job-to-GPU allocation policy and disallow sharing.

Unified Memory. The Unified Memory (UM) [17] hardware /
software technology addresses the aforementioned challenge, as
it enables page faults for the GPU, using the system’s RAM as
swap space. To allocate pageable memory, CUDA programs use
the cuMemAllocManaged method. When a page fault occurs, the
UM subsystem (kernel module) fetches the missing page to GPU
memory and chooses a victim page from any context to evict to
host RAM, employing a Least Recently Used (LRU) replacement
policy. UM thus allows GPU memory to be oversubscribed, i.e., the
sum of memory allocations across all contexts can exceed the GPU
physical VRAM size.

Thrashing. Thrashing is a situation in which time spent han-
dling page faults overwhelms the time spent doing useful computa-
tions. When developers oversubscribe GPU memory, they have to
make sure to avoid thrashing when the working sets of co-located
apps (i.e., the data they are actively using; a subset of their alloca-
tions) do not fit in the corresponding GPU VRAM. The constant
millisecond-scale context-switching of the black-box CUDA sched-
uler exacerbates this risk.

3 APPROACH
3.1 Overview
To allow each co-located application to utilize the entire GPU
VRAM, nvshare converts every non-pageable cuMemAlloc call to
its pageable cuMemAllocManaged counterpart. To avoid thrashing
due to excessive swapping, nvshare artificially stretches the ex-
clusive CUDA context time slice from a few milliseconds to tens
of seconds, which we call a Time Quantum (TQ). To this end, we
introduce the concept of a per-device GPU lock, which we schedule
among applications that want to run a computational burst on the
system’s GPU. Only the application holding the lock can launch
work on the GPU, while the CPU parts of co-located applications
can overlap freely. When an application obtains the lock, it gradu-
ally pages in its data into GPU physical memory and evicts the data
of the other co-located applications. In this way, each application
can utilize the entire GPU VRAM while also avoiding thrashing.

3.2 System Architecture
Figure 1 depicts the overall architecture of our system which in-
volves three basic components: (1) the interceptor, which hooks
CUDA calls, (2) the client, which requests / releases the GPU lock
on behalf of the application and, (3) the scheduler, which manages
the GPU lock among the co-located applications.

Interceptor. The interceptor library re-exports the subset of
functions from the CUDA API that we need to hook. The LD_-
PRELOAD environment variable points to the location of our inter-
ceptor library in the execution environment ( 0○). This variable
instructs the dynamic linker to link our library with the corre-
sponding application before any other library. As a result, when the
application makes a CUDA call, it calls our version of the function
instead. The interceptor hooks application calls to cuMemAlloc ( 1○)
and internally invokes cuMemAllocManaged( 2○) instead, forcing
the application to use UM. The interceptor also hooks CUDA API
functions ( 3○) which can cause page faults and blocks them until
the application obtains the GPU lock ( 6○).

Client. The interceptor spawns the client (a set of threads) when
the user application makes its first CUDA call. The client commu-
nicates with the scheduler to request or release the GPU lock ( 4○).
Before releasing the lock it makes sure all previously submitted
GPU work is complete. In this manner, it avoids scenarios in which
the GPU computations of the previous lock owner overlap with
those of the new lock owner and cause unnecessary page faults.
Additionally, it releases the GPU lock back to the scheduler early if
the application has not been doing any GPU work in the last few
seconds. This optimization improves GPU utilization, especially
when the TQ is set to a large value, as it ensures that clients hold
the GPU lock only as long as they are actively using the GPU.
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Figure 2: An example execution timeline of applications run-
ning under nvshare.

Scheduler. The scheduler’s job is to manage the GPU lock. It
has two modes, on and off. When it is enabled (on), it assigns the
GPU lock to a single client at a time ( 5○) for a configurable time
quantum (TQ), handling requests from clients in an first come first
served manner. When it is disabled (off), it notifies all clients that
they can freely launch GPU work in parallel. Users can configure
the scheduler’s TQ and toggle it on / off using the nvsharectl
command-line utility. Note that we have not yet implemented auto-
matic thrashing detection, therefore we must toggle the scheduler
on and off manually. The safest approach is to always leave it on,
unless we know the workloads fit into VRAM.

3.3 GPU Sharing Scenario
Figure 2 presents an execution timeline scenario that involves two
applications running in parallel on the same GPU with nvshare
enabled. As an example, consider two interactive ML development
tasks (Jupyter Notebooks) that also include idle periods, during
which the developer refactors their code.

From 𝑇 0 until 𝑇 1, APP1 preprocesses its data on the CPU. In the
meantime, APP2 is idle, as developers are refactoring their code. At
𝑇1, APP1 starts running a notebook cell with GPU computations.
Thus, the application requests the GPU lock from the scheduler,
and since the GPU is vacant, the scheduler provides it. At 𝑇 2, APP2
also wants to run GPU computations, but has to wait for the GPU
to be free, as APP1 is using it. At 𝑇3, TQ elapses. The scheduler
retrieves the GPU lock from APP1 and provides it to APP2. Since
APP1 still wants to use the GPU it requests the lock again. At 𝑇4,
APP2 releases the GPU lock early, because it does not need the
whole TQ to finish its GPU burst.

3.4 Implementation
We have implemented nvshare in the C programming language
(∼3000 lines of code). The client and scheduler communicate with
a persistent connection over UNIX sockets. In this way we elimi-
nate the need for heartbeat messages. In case of a client crash, the
scheduler can recover the GPU lock immediately.

4 EVALUATION
We have integrated nvshare into Kubernetes [5]. In this context,
we have compared our approach against another GPU sharing
mechanism, KubeShare [29].

Interactive applications, including ML development on Jupyter
Notebooks, do not have a finite execution time and users can change

Variant Batch Size GPU Memory use GPU/CPU ratio
light_balanced 16 7.2 GB 50/50
light_intense 16 7.2 GB 90/10
heavy_balanced 64 15.3 GB 50/50
heavy_intense 64 15.3 GB 90/10

Table 1: Our evaluation involves four variations of a synthetic
ML application, which train Tensorflow’s ResNet152v2 [22]
model with different parameters.

their code dynamically. As a result, there is no straightforward way
to define corresponding quantitative measurements. We chose to
evaluate nvshare on non-interactive, ML training workloads with
no idle periods, which represent the most computationally dense
scenario. In this manner, we can estimate the lower bound of the
performance increase that nvshare offers.

4.1 Setup
Kubernetes Integration. Integrating nvshare into an orchestrator
is straightforward. To highlight this feature, we have integrated
nvshare with Kubernetes [5]. To do so, we implemented a device
plugin [3] which advertizes the “nvshare.com/gpu" resource type,
in line with the official NVIDIA device plugin [6], which in turn
advertizes “nvidia.com/gpu".

Comparison. KubeShare [29] is a promising andwell-established
GPU sharing mechanism for Kubernetes (167 stars on GitHub).
KubeShare addresses the GPU memory contention problem by
assigning a fixed slice of GPU memory to every co-located applica-
tion. Note that KubeShare does not allowmemory oversubscription,
thus we can only compare it with nvshare on a subset of experi-
ments, where the total memory usage is smaller than the VRAM
size. For memory oversubscription scenarios we compare nvshare
with the only choice that users currently have, which is running
the workloads sequentially.

Workloads. Our evaluation suite comprises 4 variants of a syn-
thetic ML application that trains a dog breed image classifier using
a ResNet152v2 [22] model, written in Tensorflow. Table 1 presents
the variants and their corresponding characteristics. Our suite con-
tains a mix of CPU and GPU computational parts. The CPU part
trains the model for a few steps, while the GPU part trains the
model for 5 Epochs. Note that training on the CPU is an order
of magnitude slower than on the GPU. Since the total volume of
computations is fixed, we can use the total completion time as the
measure of performance. The variants differ on (1) GPU memory
usage and (2) GPU / CPU compute ratios. The light variants use
7 GB of GPU memory, so we can co-locate two instances on the
same GPU with KubeShare and compare it against our mechanism.
The heavy variants use 15 GB of GPU memory, which means that
only nvshare can run two of them in parallel, and our baseline
involves sequential execution. We also vary the GPU / CPU part
ratio to examine different GPU contention scenarios. When GPU
computations dominate the execution time, the benefit of sharing
diminishes, as a single application can saturate the GPU on its own.

Execution Environment. We conducted our experiments on a
server machine with a 16-core CPU (Intel Xeon 2.3 GHz), 104 GB
of host RAM and an NVIDIA Tesla P100 GPU with 16 GB of device
memory. We used Tensorflow 2.3.0 and Kubernetes 1.25.
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Scenario light_balanced(s) light_intense(s) heavy_balanced(s) heavy_intense(s)

Baseline (sequential) 2636 1384 2766 1438
KubeShare [29] 1724 [1.53x] 1078 [1.28x] OOM Error OOM Error
nvshare (scheduler off) 1772 [1.49x] 1128 [1.23x] 11757 (thrashing) 11434 (thrashing)
nvshare (1000) 2053 [1.28x] 1361 [1.02x] 2043 [1.35x] 1380 [1.04x]
nvshare (100) 2010 [1.31x] 1351 [1.02x] 2100 [1.32x] 1435 [1.00x]
nvshare (60) 2020 [1.30x] 1348 [1.03x] 2122 [1.30x] 1468 [0.98x]
nvshare (30) 2017 [1.31x] 1366 [1.01x] 2170 [1.27x] 1521 [0.95x]

Table 2: Total Completion Time (TCT) measurements for two
copies of eachworkload.We show speedup in square brackets
and for nvshare-related rows, we show Time Quantum (TQ)
values in parentheses.

4.2 Results
Performance measurements. Table 2 presents our results. The
baseline for our measurements is the sequential execution of two
copies of each variant. For the light variants, nvshare with the
scheduler disabled offers a comparable speedup to that of Kube-
Share. In KubeShare’s case, we must declare the peak memory
usage of the workloads before launching them, which is not al-
ways the case with real workloads. nvshare with the scheduler
enabled lags behind, but still offers an up to 1.28x total throughput
increase. This is expected, as in these light applications there is no
thrashing and therefore no need to enforce exclusive GPU access.
Note that the default black-box NVIDIA context switcher, which is
used in KubeShare and nvshare without scheduling, handles the
GPU workloads in a more efficient manner. Specifically, it switches
between the workloads every few milliseconds and better fills in
the utilization gaps in the computational units.

KubeShare cannot support two copies of heavy variants running
in parallel, as the combined GPUmemory usage of 30 GB far exceeds
the VRAM capacity. When running two workloads with nvshare’s
scheduler disabled the system thrashes, which is reflected by the
huge execution times and illustrates the necessity of our scheduler.
However, with the anti-thrashing scheduler enabled, we offer an
up to 1.35x speedup in the 50/50 case, and a 1.04x speedup even in
the 90/10 case, which represents the absolute worst case in terms
of GPU computational intensity.

Choosing a TQ for the scheduler. Figure 3 presents the Total
Completion Time (TCT) for two heavy_balanced instances run-
ning in parallel under nvshare. The horizontal line shows the TCT
for the sequential execution of the workloads and acts as a baseline.
For interactive jobs, a smaller TQ is ideal. A large TQ value mini-
mizes TCT, as the GPU changes hands less often leading to a smaller
page fault overhead. When the TQ becomes too small (<10 sec),
TCT begins to sharply rise, as execution time is dominated by page
faults. This is because each application does not hold the GPU long
enough to perform meaningful computations after having fetched
its data to the GPU. For batch jobs, such as ML training, where our
only goal is to minimize TCT, we recommend setting TQ to a large
value (e.g., 1000 sec), to let each workload perform its GPU bursts
unhindered and minimize page fault overhead.

5 RELATEDWORK
For the sake of brevity, we will only discuss GPU sharing solutions
that are transparent, i.e., require no source code changes to the
application [23, 26], framework [20, 25, 28], or the OS [24].

Memory-agnostic. This category ignores memory contention
and circumvents the one-to-one job-to-GPU allocation. NVIDIA

T(sequential) = 2766 s

● TQ too small 
● too much swapping

35% 
speedup

30% 
speedup

Faster (bigger throughput)More interactive (smaller latency)

ideal TQ range

Figure 3: Total completion time of two heavy_balancedwork-
loads for varying Time Quantum (TQ) values.

Kubernetes time-slicing [16] uses MPS [8], which funnels multiple
applications into the sameCUDA context. Thus, they are treated as a
single application by CUDA.MPS does not allowGPUmemory over-
subscription and does not provide any fault isolation. Slurm Shard-
ing [14] and GKE (Google Kubernetes Engine) time-sharing [15]
allow multiple jobs to run on the same GPU but suffer from OOM
errors, as they do not restrict the per-job memory consumption.

Memory-aware. NVIDIA’s Multi-instance GPU (MIG) [7] is a
hardware mechanism available only on some GPU models. It en-
ables presenting a GPU as smaller independent devices, each with
its own memory and compute units. The GPU Sharing Scheduler
Extender [4] in Kubernetes utilizes pre-declared GPU memory re-
quirements to bin pack jobs. Note that it does not enforce these
limits at runtime. KubeShare [29] (see Section 4.1), additionally
enforces these requirements at runtime, meaning that if a job tries
to allocate more memory than its slice, it gets an OOM error. In all
the above approaches, the limiting factor is the VRAM size. Users
need to be aware of the peak memory usage for their applications
beforehand. This requirement, combined with the fact that ML
Frameworks [12, 19] overallocate GPU memory, can be impractical.
TGS [27] is similar to nvshare, as it also utilizes UM to enable GPU
memory oversubscription. However, it is designed exclusively with
deep learning training applications in mind. Specifically, it assumes
a steady work submission rate and monitors deviations from that
rate to detect thrashing. However, it does not prevent it in a deter-
ministic manner (as nvshare does). Thus, in cases of non-steady
work submission rates such as interactive ML development it can
suffer from performance degradation and system crashes.

6 CONCLUSION AND FUTUREWORK
We introduced nvshare, a practical GPU sharing solution which
enables each co-located application to utilize the entire GPU mem-
ory. Our evaluation indicated that nvshare performs equally well
to KubeShare [29] in conventional sharing cases where total GPU
memory usage fits into VRAM. In GPU memory oversubscription
cases, which KubeShare does not support, nvshare significantly
outperforms the sequential execution baseline. We plan to extend
nvshare with a thrashing detection mechanism, which will enable
or disable our scheduler automatically.
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