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Abstract—Modern JavaScript applications increasingly rely on
native extensions and WebAssembly modules for performance-
critical functionality. This multi-language architecture, how-
ever, introduces attack surfaces in native code that may be
exploitable via JavaScript interfaces. Effective cross-language
security analysis depends on accurately identifying bridges,
i.e., connection points where JavaScript functions delegate to
native or WebAssembly code. Yet, existing analysis approaches
suffer from incomplete coverage and false positives due to the
diversity of foreign function interfaces in JavaScript.

We present GASKET, a novel dynamic analysis tool that
effectively identifies bridges between JavaScript and low-level
code. The key insight behind GASKET is that regardless of
the binding framework or runtime used, all function ob-
jects are ultimately represented as uniform internal structures
within the JavaScript engine (V8). By analyzing the memory
layout of these structures, GASKET effortlessly identifies the
native or WebAssembly functions bound to JavaScript high-
level constructs, even across diverse binding frameworks and
execution environments. Our evaluation demonstrates that
GASKET achieves perfect recall while incurring no false posi-
tives. When integrated with existing security tools across 1,266
npm packages, GASKET enables the detection of 54 additional
vulnerable flows in 23 packages that were missed by prior
approaches due to incomplete bridge identification. Among
these flows, 19 are confirmed to be exploitable vulnerabilities.
Our systematic analysis of vulnerability reachability across
∼2K dependent packages reveals that while many packages
depend on vulnerable native extensions, only a small fraction
actually invoke vulnerable functions. This allows for reduced
alert fatigue and actionable security insights.

1. Introduction

Modern software development increasingly relies on
multi-language applications that combine high-level pro-
gramming languages with native code to achieve optimal
performance and code reuse [1], [2], [3], [4]. JavaScript
applications exemplify this trend, frequently incorporating
native extensions written in C [5], C++ [6], or Rust [7],
as well as WebAssembly [8] modules. This polyglot ap-

proach enables developers to harness the expressiveness of
JavaScript while accessing performance-critical functional-
ity and established native libraries. However, this choice
comes with significant security challenges [9], [10].

The security implications of multi-language architec-
tures extend beyond individual applications, impacting soft-
ware supply chain security [11], [12], [13]. In the JavaScript
ecosystem, native-backed packages create complex, cross-
language dependency graphs [14], [15], [16]. This com-
plexity hinders both vulnerability detection and reachability
analysis. Recent studies have shown that native extensions
are prone to critical issues, such as memory- and type-unsafe
operations [9], [14], while at the same time, traditional
dependency scanning tools that operate at the package level
often miss whether vulnerable native functions are actually
reachable from JavaScript code. As a result, existing security
tools suffer from high false-positive and false-negative rates,
undermining developer trust in security alerts.

Cross-language program analysis presents several chal-
lenges, particularly in identifying the precise connection
points—or bridges—between different languages. These
bridges represent the critical junctures where control flow
and data flow transition between language boundaries. In
JavaScript applications with native or WebAssembly exten-
sions, these bridges often take the form of JavaScript func-
tion objects that delegate execution to low-level code. Ac-
curately identifying these bridges is important to numerous
security applications, including vulnerability detection [14],
[17], reachability analysis [18], attack surface analysis [19],
and runtime protection mechanisms [15], [20].

Existing cross-language security analyzers, such as
CHARON [14], rely on static analysis techniques to identify
JavaScript-native bridges by examining binding framework
APIs and native code patterns. However, these approaches
suffer from a number of limitations: they support only
a subset of the pathways and foreign function interfaces,
while producing false positives due to over-approximation,
and missing bridges due to the dynamic nature of modern
JavaScript applications. Similarly, runtime protection sys-
tems such as NATISAND [15] and HODOR [16] require ac-
curate bridge information to enforce security policies across
language boundaries. The effectiveness and scope of these
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tools are directly constrained by the effectiveness of bridge
identification mechanisms.

Approach: We introduce a dynamic analysis technique
that overcomes the limitations of existing static analysis
tools by identifying cross-language bridges directly at the
JavaScript engine level. The core insight behind our ap-
proach is that regardless of the binding framework, runtime,
or implementation language, all JavaScript function objects
are ultimately represented as internal structures in the under-
lying JavaScript engine (V8 in our case). Using this insight,
our technique analyzes the memory layout of these internal
structures and reliably recovers the native or WebAssembly
functions bound to high-level JavaScript functions. To do
so, it exhaustively examines loaded modules and extracts
the memory addresses of functions exposed within them.

We have implemented our approach in GASKET, a
runtime-agnostic tool that operates across Node.js, Deno,
and Chromium environments. Our evaluation demonstrates
that GASKET achieves perfect recall across twenty packages
representing ten different binding frameworks and runtime
environments, while incurring no false positives.

The practical impact of our work extends to real-world
security applications. By integrating GASKET with existing
security tools, we demonstrate significant improvements in
identifying native-specific vulnerabilities in JavaScript ap-
plications. Specifically, when we replace CHARON’s static
bridge identification mechanism with GASKET, the enhanced
system detects 2.5× more bridges. This ultimately leads
to the detection of 54 vulnerable flows in 23 packages
that are entirely missed by prior work. We also showcase
that GASKET can enable effective cross-language reachabil-
ity analysis. Our findings suggest, while many npm packages
depend on vulnerable versions of native extensions, a small
fraction actually invoke vulnerable functions, enabling more
precise vulnerability prioritization and reduced alert fatigue.

Contributions.: We make the following contributions:

• We show that despite the heterogeneity of JavaScript
with respect to foreign function interfaces, all bindings
ultimately result in a common memory abstraction.

• Building on this observation, we introduce GASKET, the
first general-purpose dynamic analysis framework for
identifying bridges between JavaScript and native / Wasm
code. Unlike prior work, GASKET seamlessly supports
bindings implemented in various languages, created with
different binding frameworks, and executed across multi-
ple runtimes (e.g., Node.js, Deno, Chromium).

• We integrate GASKET into the CHARON vulnerability
detection tool and show that it enables the discovery of 54
additional vulnerable flows across 23 new packages that
are missed by CHARON. Among them, 19 vulnerabilities
across 12 packages are confirmed exploitable.

• We provide the first systematic evaluation of vulnerability
reachability in JavaScript packages with native exten-
sions, analyzing 10 known vulnerabilities across 2,197
dependent packages and demonstrating significant reduc-
tion in false positive security alerts.

• We provide GASKET as an open-source tool that can
be integrated with existing security analysis frameworks,
enabling researchers and practitioners to benefit from
improved cross-language analysis capabilities.

Remark: Our tool will be made publicly available as
open source upon publication. We have followed responsible
disclosure practices, notifying affected vendors within the
recommended time window. Final disclosure information
will be included in the published version.

2. Background and Problem Definition

2.1. Native Extensions and Security Implications

The JavaScript ecosystem exhibits multi-execution en-
vironments. JavaScript engines (e.g., V8), along with their
embedders (e.g., Node.js, Deno, or Chromium), allow devel-
opers to extend their JavaScript programs with native code
or interface with other environments, such as WebAssembly
(Wasm). In this setting, many JavaScript packages deployed
on npm combine JavaScript source files (.js) either with (1)
native extensions compiled from low-level languages such
as C, C++, or Rust, or (2) with Wasm modules.

Consider the example in Figure 1, which shows code
fragments from a widely used npm package sqlite3.
This package provides an asynchronous JavaScript API
for interacting with the SQLite database engine. A client
program (Figure 1a) can create a database and execute
SQL statements asynchronously (e.g., lines 4–6). To run a
given SQL statement, the sqlite3 package internally calls
Statement.prototype.run (Figure 1b; line 5), which is
implemented in native code. Specifically, the implemen-
tation of Statement.prototype.run is given by a C++
method called Statement::Run (Figure 1c; line 10), which
is compiled into the shared library node sqlite3.node
and subsequently imported into the JavaScript program
just like a regular module (Figure 1b; line 1). The con-
nection between JavaScript and native code is estab-
lished using a binding framework (in this case, it is the
node-addon-api framework [21]) which exposes native
functions as JavaScript-accessible objects (Figure 1d).
Vulnerability detection: The native implementation of
Statement.prototype.run internally calls a C++ method
named Bind (Figure 1c; line 12). This method is used to
attach user-provided parameters to an SQL statement. For
example, in the client code of Figure 1a (line 5), the object
{toString: 23} is bound to an INSERT statement. The Bind
function iterates over each given parameter and invokes
BindParameter (Figure 1c; lines 15–20), which attempts
to convert the provided parameters into strings via the V8-
specific method v8::Value::ToString() (line 17).

The problem in the implementation of BindParameter
is that it incorrectly assumes the toString property of the
given object is always a function. Indeed, this assumption
does not hold for the program of Figure 1a, as the given
object carries a property toString that is a number, not a

https://www.npmjs.com/package/sqlite3
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1 // client.js
2 const sqlite3 = require('sqlite3');
3 const db = new sqlite3.Database('test.db');
4 db.serialize(function() {
5 db.run("INSERT INTO t VALUES (?)", [{toString:

23}]);
6 });

(a) A client JS program that uses the node-sqlite3 package.

1 // sqlite3.js
2 const sqlite3 = require("node_sqlite3.node");
3 Database.prototype.run = function(sql, params) {
4 const stmt = new sqlite3.Statement(sql);
5 stmt.run.apply(params);
6 }

(b) JS code in sqlite3 that delegates execution to C++ code.

1 template <class T> T* Statement::Bind(
2 Napi::CallbackInfo& info,
3 int start
4 ) {
5 Napi::Array array = info[start].As<Napi::Array>();
6 int length = array.Length();
7 ...
8 BindParameter(array.Get(i), pos)
9 }

10 Napi::Value Run(Napi::CallbackInfo &info) {
11 Statement *smt = this;
12 Baton *baton = stmt->Bind<RowBaton>(info);
13 ...
14 }
15 Field* BindParameter(Napi::Value s, int pos) {
16 if (source.IsObject()) {
17 std::string val = s.ToString().Utf8Value();
18 return new Text(pos, val.length(), val.c_str());
19 }
20 }

(c) C++ implementation of Statement::Run in node-sqlite3.

1 #include <napi.h>
2 #include <statement.h>
3 // C++ bindings
4 Napi::Object Statement::Init(Napi::Env, Napi::Object

exports) {
5 auto t = DefineClass(env, "Statement", {
6 InstanceMethod("run", &Statement::Run),
7 InstanceMethod("get", &Statement::Get),
8 InstanceMethod("bind", &Statement::Bind),
9 InstanceMethod("all", &Statement::All),

10 ...
11 });
12 }
13
14 Napi::Object RegisterModule(Nap::Env, Napi::Object

exports) {
15 Statement::Init(env, exports);
16 ...
17 return exports;
18 }
19 NODE_API_MODULE(node_sqlite3, RegisterModule);

(d) C++ bindings in sqlite3.

Figure 1: Example JavaScript client program (client.js; Figure 1a) invoking a vulnerable sqlite3 package version with
native extensions. Our approach accurately identifies the bridge from JavaScript to C++ code, enabling: (1) vulnerability
detection tools to identify a type-unsafe flow from the public API of the package to a toString call (Figure 1c; line 17),
and (2) vulnerability reachability analysis tools to determine whether a dependent package (client.js) transitively calls the
vulnerable native function in its sqlite3 dependency.

function. This causes a hard crash in Node.js when invoking
toString() on line 17 (Figure 1c) which in turn can lead
to a denial-of-service (DoS) attack.

Threat model: In the context of this work we consider
attacker-controlled inputs to JavaScript applications that
utilize either native extensions or WebAssembly modules.
Specifically, the attacker’s goal is to exploit vulnerabilities
in native code [9], [14] (e.g., buffer overflows, format string
attacks, integer overflows) by crafting inputs that flow from
JavaScript through binding interfaces to vulnerable native
functions. We assume the JavaScript runtime (V8) and
underlying operating system are trusted, while third-party
packages with native extensions are not trusted.

Reachability analysis: Now assume that the vulnerability
described above has been discovered (e.g., by a bug-finding
tool [9], [14]), patched by adding a check that ensures
toString is a valid function [22] and assigned a CVE
(CVE-2022-21227 [23]). A key follow-up task is assess-
ing whether downstream client packages are affected this
CVE. While platforms such as GitHub and npm provide
advisories, they typically operate at package level, without
checking whether the vulnerable function is actually reach-
able, leading to false positives. To address this, industry tools
increasingly rely on fine-grained call graph analysis [24]

to determine whether vulnerable dependency functions are
transitively reachable from client code.

However, doing so in our example requires the con-
struction of cross-language call graph that captures the
caller-callee dependencies in both JavaScript and C++ code.
In particular, the call graph needs to indicate that a call
to Database.prototype.run in the client package (Fig-
ure 1a, line 5) transitively calls the vulnerable C++ function
BindParameter in its dependency.

2.2. Problem Formulation

Bridges: To enable cross-language security analyses which
enable vulnerability detection [9], [14], native code sand-
boxing [15], and attack surface reduction [16], it is essen-
tial to identify the connection points between languages.
For example, to effectively detect the vulnerability in Fig-
ure 1, a taint analysis tool must track how the argu-
ments of Statement.prototype.run (Figure 1b, line 5)
propagate to the parameters of its native implementation
Statement::Run (Figure 1c, line 10). Similarly, a cross-
language call graph for vulnerability reachability analysis
must capture that invoking Statement.prototype.run in
JavaScript ultimately leads to a call to the native C++
method Statement::Run.
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In this work, we refer to those connection points
as bridges. A bridge is defined as a triple consisting of three
elements: (1) the fully-qualified name (FQN) of a JavaScript
function (e.g., sqlite3.Statement.prototype.run), (2)
the FQN of the corresponding native or Wasm function it
invokes (e.g., Statement::Run), and (3) the shared library
or the Wasm module where that function is defined (e.g.,
node sqlite3.node).
Identifying bridges: Identifying bridges between
JavaScript and native or Wasm code is a challenging task.
While one might argue that this can be easily achieved
through static analysis by inspecting how bindings are
defined (e.g., lines 5–12 in Figure 1d), prior work [14],
[25], [26] has shown this static-based approach to be both
imprecise and incomplete (more details in Section 6.4).
This undermines the effectiveness of the cross-language
security analyses that rely on accurate bridge identification.
For example, failing to detect the bridge in Figure 1 leads
to a vulnerability going undetected or prevents identifying
that a client package is affected by the CVE.

Static approaches face several limitations: (1) language
extensions span multiple languages (C, C++, Rust), each
requiring distinct analysis pipelines; (2) diverse JavaScript
runtimes (Node.js, Deno) employ different FFIs and over 15
binding frameworks with distinct APIs and semantics; and
(3) WebAssembly modules often expose functions directly
without explicit binding code.
Change in perspective: Recent work in Python, notably
PYXRAY [26], introduced object layout analysis, a dynamic
technique that identifies bindings between Python functions
and native code. The approach imports all native extension
modules to load foreign function objects into memory. Using
the id() function, a Python built-in construct, it extracts
their memory addresses and finally inspects the in-memory
layout based on CPython’s object model. For foreign func-
tion objects, a specific layout field contains the address
of the bound native function, which PYXRAY resolves to
establish Python-to-native bridges.

PYXRAY achieves 100% recall by leveraging two key
observations: (1) once a native extension module is loaded,
all its associated objects (including foreign function objects)
reside in memory (“Observation 1”); and (2) the in-memory
representation of each foreign function object contains a
pointer to the native function it invokes (“Observation 2”).
Focus of this work: Applying object layout analysis
to JavaScript poses a number of challenges, as JavaScript
supports multiple execution environments (e.g., native ex-
tensions, Wasm) with diverse FFIs across runtimes and
embedders. This raises a number of fundamental questions:
(1) Are bindings fully instantiated in memory at module
load time, as in Python (“Observation 1”)? (2) Do these
execution environments share a unified memory model and
object representation? (3) Do JavaScript function objects
embed internal pointers to the native or Wasm functions
they invoke (“Observation 2”)?

To address these questions, we next examine the tech-
nical details of JavaScript function objects and their impli-

V8::Function

V8 API

Deno Node.js

n methods
private: -ptr*

Chromium
Binding 

Framework

JSFunction

properties 
— prototype 
— code
— function_data
— […]

Figure 2: Using V8’s high-level API, embedders create
and manipulate v8::Function instances. Internally, each
v8::Function points to a JSFunction object.

TABLE 1: Description of different function objects in V8.
“Code” shows the code entry point referenced by the code
field in the JSFunction layout. “Function data” indicates
the metadata referenced by the function data field in the
JSFunction layout.

Category Function Object Type Code function data

JS functions
Uncompiled JS function v8::CompileLazy String with JS code
Compiled JS function v8::InvokeInterpreter Bytecode
Optimized JS function Optimized assembly code Unoptimized assembly code

Internal functions Builtin function Assembly code A small integer

Foreign functions Native function v8::HandleAPICall FunctionTemplateInfo
WebAssembly function v8::JSToWasmWrapper WebAssembly module

cations for object layout analysis.

3. Representation of JavaScript Functions

To understand whether object layout analysis tech-
niques can be applied to JavaScript we need to examine
how JavaScript functions are represented and implemented.
This responsibility falls to execution engines (e.g., V8,
JavaScriptCore), which manage the creation, layout, and
runtime behavior of JavaScript functions through internal
representations, such as C++ classes or structs. JavaScript
embedders (e.g., Node.js, Chromium) utilize the external
API of a JavaScript execution engine to define JavaScript
functions that are backed by native logic. Since embedders
interact with high-level APIs, the precise memory layout
and behavior of JavaScript functions is determined entirely
by the internals of the execution engine.

In this work, we focus on the V8 execution engine.
We choose V8 because it holds a significant position in
the JavaScript ecosystem, serving as the engine used by
both of the two most popular runtimes, Node.js and Deno,
as well as the most popular web browser, Chrome (based
on Chromium). In V8, all function objects (whether native
or regular ones) are allocated on the V8 heap and repre-
sented by a single internal C++ class called JSFunction.
JSFunction’s layout is shown in Figure 2. In addition to
standard properties, such as its object members and proto-
type, a JSFunction instance contains a field called code.
This field points to a dispatcher function that determines
how a call to the function object is handled, based on data
stored in the function data field of a JSFunction object.
Types of function objects: The combination of code and
function data determine the type and the behavior of
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.code: <ptr>

.function_data: <ptr>

.callback: <ptr>
.callback_data: <ptr>

.cb: <ptr>
.cb_data: <ptr>

.callback: <ptr>

Statement.prototype.run ( )

ParseExpression ( )

HandleAPICall ( )

FunctionCallbackWrapper::Invoke ( )

Napi::InstanceMethodWrapper ( )

Statement::Run ( )

[obj]: JSFunction

[obj.function_data]: FunctionTemplateInfo

[FTI.callback_data]: NodeJS::Callbackbundle

[bundle.cb_data]: Napi:: Callbackdata

invoke

invoke

invoke

invoke

JavaScript

Node.js

V8

node-addon-api

sqlite3

Control Flow Object Layout

Obj

FTI

bundle

Figure 3: The runtime layout of Statement.prototype.run
(Figure 1b, line 5). When this function is called from
JavaScript, V8, along with the embedder, follow a chain
of function pointers across several internal structures. This
chain spans multiple layers of the object layout, ultimately
leading to Statement::Run (Figure 1c; line 10).

function objects in V8. Table 1 classifies them into the
following categories:

JavaScript functions: These are JSFunction instances
representing functions defined at JavaScript level. Their rep-
resentation varies based on compilation state. For example,
if the function is optimized by TurboFan (V8’s optimized
JIT compiler), its code field points to machine code.

Internal functions: These are instances that wrap core
ECMAScript operations (e.g., Array.prototype.push), us-
ing internal C++ implementations defined within the V8
codebase. The code field points to the compiled native code,
while the function data field holds a small integer (called
Smi) representing the built-in function’s ID.

Foreign functions: These are JSFunction instances that
delegate execution to code outside the boundaries of V8.
This category includes what V8 refers to as API functions,
i.e., native functions defined by embedders using V8’s public
C++ API. The code field points to a call stub that dis-
patches into native code, while the function data field
references a FunctionTemplateInfo object containing the
pointer to the actual native function. Notably, a foreign func-
tion can also wrap Wasm functions exported to JavaScript.
In this case, the code field points to a trampoline that
handles the transition from JavaScript to Wasm, and the
function data field holds metadata, such as the function
index in the export table of the Wasm module.

Example: Figure 3 illustrates the runtime memory lay-
out of the JavaScript function Statement.prototype.run

Memory Address 
Extraction

Module

Bridge

Object Type 
Resolution

function 
pointer

Function Pointer 
Extraction

Symbol Name 
Resolution

Function Object 
Identification

function 
object

address
object 
type 

2

1

3

45

Figure 4: High-level overview of our approach for identify-
ing foreign function bridges.

from the example of Figure 1b. Its underlying JSFunction
instance contains a chain of pointers to internal structures
spanning multiple layers: V8 (FunctionTemplateInfo),
Node.js (CallbackBundle), and the binding framework it-
self (CallbackData). Ultimately, this chain leads to the
CallbackData structure from the used binding framework
(node-addon-api). This structure contains a pointer to
Statement::Run (Figure 1c; line 10), the C++ implemen-
tation of Statement.prototype.run. Figure 3 also shows
the invocation path: calling Statement.prototype.run in
JavaScript triggers the execution of v8::HandleAPICall
(the code field in the JSFunction object), which ac-
cesses various function pointer fields to ultimately invoke
Statement::Get.
Creation of function objects: JavaScript embedders and
binding frameworks can create their own function objects
using exclusively the public V8 API. For example, to
expose a native C++ function to JavaScript, embedders
typically invoke v8::FunctionTemplate::New. This and
other related API methods ultimately produce an instance
of v8::Function, not an instance of the aforementioned
JSFunction class. Internally, a v8::Function instance
holds a reference to a JSFunction object allocated in V8’s
heap. However, the layout of this JSFunction is opaque to
developers; they can only interact with it through specific
high-level methods provided by the v8::Function API.

4. Bridging JavaScript and Foreign Functions

Overview: Among the different types of function objects
supported in V8 (Table 1), this work focuses on foreign
function objects, that is, those objects that do not repre-
sent pure JavaScript code but instead cross V8’s execution
boundary and invoke native or Wasm code. Our goal is to
identify bridges that link these JavaScript functions to their
underlying foreign implementations.

Figure 4 presents the high-level overview of our ap-
proach. Given an npm package, the approach imports its
modules and recursively traverses all module members
loaded into memory. When a function object is encountered
( 1⃝ function object identification), the approach extracts its
memory address ( 2⃝ memory address extraction) and de-
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termines the embedder-specific and/or binding framework-
specific type of the object from its internal JSFunction
representation, ( 3⃝ object type resolution). If the provided
function object is foreign, our approach applies specific
extraction rules to recover a pointer to the native or Wasm
function that will be executed when the JavaScript function
is invoked ( 4⃝ function pointer extraction). Once extracting
the function pointer, the approach resolves it to a native
symbol or Wasm function ( 5⃝ symbol name resolution)
and constructs a corresponding foreign function bridge as
defined in Section 2.2.
Challenges: Each of these steps presents challenges related
to the JavaScript semantics and V8 internals.

C1: Unexported objects. Step 1⃝ (function object iden-
tification) assumes access to all objects defined in a mod-
ule. However, JavaScript supports encapsulation, meaning
certain objects may be created and used internally but not
exported. As a result, unexported foreign functions can be
missed while traversing the contents of an imported module.

C2: Opaque JSFunction instances. In V8, the underly-
ing JSFunction objects reside entirely within its internal
heap and are inaccessible via JavaScript or its public API.
Their fields and layout (discussed in Section 3) are hidden
from embedders, which poses challenges for both memory
address and function pointer extraction (steps 2⃝ and 4⃝).
Unlike Python, JavaScript provides no way to obtain the
memory address of an object. And even if it did, that address
does not expose the underlying JSFunction, which remains
inaccessible across various runtimes and embedders.

C3: Binding framework-specific layouts. The native im-
plementation of foreign function objects is stored in deeply
embedded, highly diverse, and often inconsistent ways.
Although this information is typically referenced via the
FunctionTemplateInfo structure (accessible through the
function data field inside the JSFunction object; see
Figure 3), its layout is not standardized. Binding frameworks
and embedders are free to embed arbitrary native structures
within this object and define their own calling conventions.
This is exemplified by Figure 3 where recovering the na-
tive implementation of Statement.prototype.run in the
sqlite3 package requires traversing a deeply nested set
of custom structures injected by the binding framework
(node-addon-api). Therefore, different frameworks may
embed different layouts, and the pointer to the native or
Wasm function may be stored in entirely different locations.
This complicates function pointer extraction (step 4⃝).

C4: No explicit type information. All function objects in
V8 share the same internal type, that is JSFunction. Even
if we retrieve a memory address, there is no associated type
metadata indicating which binding framework produced it
to deduce what internal structure it follows (step 3⃝). In the
following, we detail how we tackle these challenges.

4.1. Function Object Identification

Basics: The input to our approach is an npm package
(Figure 4), which may include a combination of JavaScript

modules (.js files), native extension modules (.node files),
shared libraries (.so files), and Wasm modules (.wasm files).
All these files are grouped into two main categories:

Modules: These are files that are directly imported via
require or import, such as regular JavaScript modules (.js
files) or extension modules (e.g., .node files). For example,
in the sqlite3 example, native C++ code is compiled into
node sqlite3.node, which exports JavaScript-accessible
objects (Figure 1b, line 1).

Dynamic dependencies: These are supported files (e.g.,
general-purpose shared libraries, Wasm modules) that are
loaded at runtime programmatically For example, Deno
relies on Deno.dlopen, which loads an arbitrary library dy-
namically and exposes selected native symbols to JavaScript:

Listing 1: An example module that uses Deno’s dlopen.
1 const dylib = Deno.dlopen("libexample.so", {
2 add: { parameters: ["i32", "i32"], result: "i32"}
3 });
4 dylib.symbols.add(1, 3); // result: 4

Notably, when Deno.dlopen is called, Deno’s runtime cre-
ates a JSFunction instance for every exposed symbol using
V8’s API (see 3). As a result, dylib.symbols.add (line
4) is a JavaScript function that refers to a JSFunction
object allocated on V8’s heap. This confirms our analysis
in Section 3: regardless of how native code is integrated
(traditional bindings or dynamic FFI), all functions are
represented uniformly as JSFunction instances.
Identifying function objects: Our approach imports
all modules (both JavaScript and native extension mod-
ules) in a given npm package through the require
/ import constructs and identifies all function objects
they contain. This is done by recursively inspecting
each imported module object and its properties us-
ing Object.getOwnAndPrototypeEnumAndNonEnumProps.
During this step, our approach also tracks the FQN of
each discovered function object to preserve its high-
level JavaScript name. For example, when introspecting
the node sqlite3.node native extension module (Fig-
ure 1d), the JavaScript function object corresponding
to the C++ Statement::Run function is identified as
sqlite3.Statement.prototype.run. Similarly, in List-
ing 1, the function object representing the native symbol
add is discovered as dylib.symbols.add.
Unexported objects: Some JavaScript objects are created
within a module but never exposed via exports, This makes
them invisible during introspection (“Challenge C1”). For
example, in Listing 1, the module loads a shared library in
an object dylib, but does not export this object. As a result,
importing the module for analysis cannot access dylib or
its native-backed functions.

To tackle this challenge, we complement the mod-
ule traversal step with a native extension that leverages
V8’s built-in heap snapshot functionality, exposed via the
v8::HeapProfiler API. This mechanism allows us to ex-
tract a complete graph of all live JavaScript objects allocated
on V8’s heap, regardless of whether they are accessible
through module exports. In this way, we identify function
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objects that reside on the heap, even if they are unexported.
However, when using this fallback method, we can only
infer the basename of the JavaScript function, instead of its
FQN.

4.2. Memory Address Extraction

After identifying all function objects within the modules
of an npm package, the next step is to recover their internal
representations, that is, the memory address of JSFunction
instances. However, the challenge in this context is that this
internal representation is not accessible from JavaScript code
or through embedder-level interfaces, such as the Node.js
runtime or binding frameworks (“Challenge C2”).

To overcome this challenge, our approach leverages the
native extension interface of V8. Specifically, we implement
a native function named jid that when given a JavaScript
function object (e.g., Statement.prototype.run in Fig-
ure 1b), extracts the memory address of its underlying
JSFunction representation. To do so, our approach lever-
ages V8’s calling conventions: all native functions exposed
to JavaScript must adhere to the following signature:

void jid(v8::FunctionCallbackInfo<v8::Value>& args);

In the above, the parameter args holds information about
the context of the call, such as the receiver, or the number
and the values of arguments. If a function object is passed to
jid from JavaScript, it can be accessed as args[0], which is
an instance of v8::Function. While v8::Function is part
of V8’s public API, it abstracts away the internal details
of the underlying JSFunction object. Internally, however,
v8::Function wraps a pointer to this object in V8’s heap.
To access this internal representation, our method defines
a custom C++ stub that mimics the memory layout of
v8::Function. This enables us to extract the raw pointer
to the underlying JSFunction object without relying on or
modifying V8’s public API.

4.2.1. Symbol Name and Wasm Function Resolution.
Having obtained the memory address of a JSFunction
object, the next step is to identify the native or Wasm
function it invokes. This requires locating a pointer to the
target function within the object’s memory layout. The key
challenge is that this information is stored in highly diverse
and inconsistent ways across different binding frameworks
(“Challenge C3”). Worse, given only an address α of a
JSFunction, there is no explicit type information and meta-
data in the object indicating which framework created it or
what internal structure it follows (“Challenge C4”).
Key idea: To address these challenges, we leverage two
observations. First, while binding frameworks may em-
bed custom native structures within JSFunction objects,
these structures are consistent across all bindings cre-
ated by the same framework. For example, native exten-
sions built with node-addon-api store the native function
pointer in the Napi::details::CallbackData structure,
which is referenced via a CallbackBundle embedded in the
function data field of the function object (Figure 3). This

consistency allows us to define framework-specific rules for
extracting the native function pointer from the object layout.

However, to apply these rules effectively, we must first
determine which binding framework created the function
object. This leads us to our second observation: although
we cannot directly infer the binding framework from a
raw JSFunction address, we observe that each frame-
work produces a characteristic call chain when a func-
tion object is invoked. These call chains follow a com-
mon V8 prefix but diverge at the point where the con-
trol flow crosses into framework-specific code. For ex-
ample, according to Figure 3, a call to a JavaScript
function created with node-addon-api includes a call to
FunctionCallbackWrapper::Invoke before reaching the
target native function. Notably, we do not rely on exe-
cuting the function to observe this call chain. Instead, we
reconstruct the call-chain suffix statically by inspecting the
memory layout of the JSFunction object and its embedded
function pointers. This suffix serves as a unique signature for
the used binding framework, allowing us to apply the appro-
priate rule to locate and resolve the native/Wasm function.
Extraction and resolution rules: Given the address of
a JSFunction object obtained from the previous step, we
define our pointer extraction and resolution rules as follows:

σ(H,L,W,α) = ⟨s, l⟩

Given a heap H , a set of shared libraries L loaded into the
address space, a set of Wasm modules W , and an address
α pointing to a JSFunction object in the heap, the function
σ(H,L,W,α) returns a pair consisting of (1) s, the name of
the native or Wasm function that is executing when calling
the function object, and (2) l, the path to the shared library
or Wasm module where s is defined.

Figure 5 presents a subset of inference rules for re-
solving native and Wasm functions across different bind-
ing frameworks and embedders (the remaining rules can
be found in Appendix A). In these rules, the notation
H(α, p) refers to the value found by following the access
path p (e.g., function data.callback) starting from the
base address α. The function L(α) returns the path of the
shared library in which the symbol pointed by α resides.
Similarly, W (E) returns the Wasm module associated with
the export table E. Our inference rules also rely on two
resolution functions: Rso(α) and Rwasm(E, i). The former
resolves the symbol located at address α in native code,
whereas the latter returns the name of the Wasm function
at index i within the export table E. Finally, the · notation
indicates path concatenation, while pcb and pd are notational
conventions for access paths function data.callback
and function data.callback data respectively.
Example: Consider the example in Figure 3. To resolve the
C++ function associated with Statement.prototype.run,
our approach applies the NODE-ADDON-API rule.
This rule matches a call chain suffix containing
Node::FunctionCallbackWrapper::Invoke followed
by Napi::InstanceWrap::Wrapper, indicating that the
binding was created using the node-addon-api framework.
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NAN
s = Nan::FunctionCallbackWrapper

Rso(H(α, pcb)) = s
α′ = H(α, pd)

σ(H,L,W,α) = ⟨Rso(α
′), L(α′)⟩

NODE-API
s = Node::FunctionCallbackWrapper::Invoke

Rso(H(α, pcb)) = s
α′ = H(α, pd · cb)

σ(H,L,W,α) = ⟨Rso(α
′), L(α′)⟩

WASM
s = JSToWasmWrapper Rso(H(α, code)) = s

i = H(α, fti.function index)
E = H(α, fti.instance.exports)

σ(H,L,W,α) = ⟨Rwasm(E, i),W (E)⟩

NODE-ADDON-API
Rso(H(α, pcb)) = Node::FunctionCallbackWrapper::Invoke
Rso(H(α, pcb · cb)) ∈ {Napi::InstanceWrap::Wrapper, . . . }

α′ = H(α, pcb · cb data · callback)
σ(H,L,W,α) = ⟨Rso(α

′), L(α′)⟩

NODE-INTERNAL
l = /usr/bin/node
α′ = H(α, pcb)
L(α′) = l

σ(H,L,W,α) = ⟨Rso(α
′), l⟩

DENO-INTERNAL
l = /usr/bin/deno
α′ = H(α, pcb)
L(α′) = l

σ(H,L,Wα) = ⟨Rso(α
′), l⟩

Figure 5: Inference rules for resolving the name of the native or Wasm function and the corresponding shared library or
Wasm module across different binding frameworks and embedders. The remaining rules can be found in Appendix A.

When this is the case, the pointer α′ to the native function
is located at the access path pcb · cb data · callback,
relative to the base address α of the object. This resolves to
the symbol Rso(α

′) = Statement::Run, which is defined
at the shared library L(α′) = node sqlite3.node.
Handling WebAssembly functions: Our approach
identifies JavaScript functions that wrap Wasm func-
tions by checking whether their code field points
to JSToWasmWrapper (see Table 1). This is in con-
trast to native-backed functions, which are handled via
HandleAPICall. The JSToWasmWrapper function essentially
the Wasm call by converting JavaScript arguments into
Wasm-compatible values.

Following the WASM rule in Figure 5, we ex-
tract two fields from the JSFunction object: (1)
function data.function index, which is the index
of the function within the Wasm module, and (2)
function data.instance.exports, which contains the
export table of the Wasm module. We then resolve the Wasm
function name by applying Rwasm(E, i), where E is the
export table and i is the function index.
Resolving Wasm module names: Given that the
JSFunction object does not store the module name or its
origin, we employ a sort of fingerprinting to identify the
Wasm module (.wasm file) that defines the wrapped Wasm
function. This fingerprinting process works as follows: we
hash the export table of every Wasm binary included in
the installed npm package. If the export table E found in
the JSFunction layout matches one of these, we retrieve
the name of the corresponding Wasm module using W (E).
If no match is found, we issue a warning. This typically
means the Wasm module is fetched dynamically (e.g., from
a remote source), and not bundled within the npm package.

5. Implementation

We implement our approach as a JavaScript command-
line tool called GASKET, containing roughly 1.8k lines of
JavaScript and C++ code. GASKET consists of two compo-
nents: (1) a frontend written in JavaScript (700 LoC) that im-
plements the function object identification step (Figure 4.1)
and (2) a backend (1.1k LoC) which corresponds to a
Node.js native extension written in C++ that implements the

remaining steps. Notably, although we implement GASKET’s
backend as a Node-based native extension, it is still compat-
ible with other runtimes, such as Deno. We refer the reader
to Appendix B for further details on GASKET’s frontend and
backend design, as well as additional optimizations.
Limitations: As a dynamic analysis tool, GASKET in-
herits several limitations. First, it currently targets Linux
ELF binaries and relies on GDB for symbol resolution;
extending it to support other platforms is straightforward
by integrating equivalent tooling. Second, GASKET focuses
exclusively on forward flows, (i.e., from JavaScript to native
or Wasm functions) and does not analyze reverse flows (e.g.,
callbacks from native code into JavaScript). Detecting such
flows would require a different approach, potentially based
on static analysis. To mitigate this issue, a simple strategy
could assume that if a callback (a common programming
idiom in JavaScript) is passed as an argument to a native
function identified by GASKET, then the native code may
invoke it internally. While conservative, this assumption can
help approximate reverse flows without dynamic tracking.
Third, GASKET may miss bridges created dynamically at
runtime. However, our evaluation indicates that such cases
are highly rare (Section 6) as most bindings are initialized
during module loading.

Additionally, GASKET requires that the native extension
modules contain symbol information, that is, the corre-
sponding binaries are not stripped. By default, the native
extensions in Node.js and Deno are compiled with the
-g compiler option enabled. Furthermore, because GASKET
installs and loads npm packages to inspect their memory
state, analyzing untrusted packages may require sandboxed
environments to mitigate the risk of arbitrary code execution.
Finally, our current implementation relies on V8’s memory
abstractions, and is therefore limited only to V8 embedders.
In principle, it can be extended to other JavaScript engines.

6. Evaluation

We seek answers for the following research questions:
RQ1 What is the precision and recall of GASKET in identi-

fying connections between JavaScript functions and
their corresponding native or Wasm targets?

RQ2 What is the performance of GASKET?
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RQ3 How applicable is GASKET across different
JavaScript runtimes and binding frameworks?

RQ4 Can GASKET enhance existing cross-language secu-
rity analysis tools in terms of detecting native call
targets and uncovering vulnerabilities?

RQ5 Can GASKET help developers determine whether
their code reaches native-backed vulnerabilities in
third-party dependencies?

6.1. RQ1: Effectiveness of GASKET

Binding frameworks and runtimes: We evaluate GAS-
KET’s effectiveness by applying it to Node.js and Deno
packages that utilize native or Wasm extensions. For
Node.js, we examine the six most popular binding frame-
works: NaN, Node-API, and node-addon-api for C/C++
bindings, and napi-rs, neon, and node-bindgen for Rust
bindings. We also analyze internal modules such as fs,
which use ad hoc mechanisms to interact directly with
V8, as well as packages that utilize Wasm. For Deno, we
examine internal bindings coming from its standard library
as well as packages that use the Deno.dlopen API.
Benchmarks: Packages that use NaN, Node-API, or
node-addon-api often rely on helper libraries such as
napi-macros and similar tools. To identify npm packages
that use these binding frameworks, we query the npmjs reg-
istry for packages that depend on the relevant helper libraries
and select the top two packages with the highest monthly
downloads for each framework. For internal bindings, we
focus on the fs and os modules, as these are widely used in
both Node.js and Deno applications, and studied by previous
research [15], [16].

To identify benchmarks utilizing the remaining binding
frameworks, we utilize GitHub’s code search functionality
with framework-specific query strings. For example, to find
packages using neon, we search for cx.export function,
a common function call in Neon-based projects, We then
examine the first two pages of results and select the two
most popular packages based on GitHub stars. Our final
benchmark comprises twenty packages, two per binding
framework (see Table 2).
Ground truth: To establish ground truth, we manually
inspect the source code of each package to identify files
(e.g., C++, Rust) that implement binary extensions, ensuring
that no additional code is generated dynamically at build
time. We then examine all native functions in these files
and map them to their corresponding JavaScript function
objects, based on how they are bound via the respective
binding frameworks. For the Wasm and Deno.dlopen cate-
gories, we additionally analyze all JavaScript files to locate
loading points for Wasm modules and shared libraries via
calls to Deno.dlopen or Wasm.Instantiate. For Wasm, we
then inspect the export tables of the .wasm binaries; for
Deno.dlopen, we track the exported symbols from shared
libraries at the time of loading. The complete ground truth
for each package is reported in the “Native funcs (Ground
truth)” column of Table 2. While manual inspection comes

with a risk of missing a bridge, we mitigate this by ensuring
that any native function not marked as a binding is indeed
not used by the binding framework in any way.
Results: Table 2 presents the analysis results for GASKET.
In all cases, GASKET achieves 100% recall, meaning it
successfully identifies every bridge included in the ground
truth without any false negatives. Notably, we do not explic-
itly compute the precision of GASKET, since its dynamic
nature ensures no false positives. Our results validate the
core insight behind GASKET: bindings are mostly created
when loading a binary extension module or library into
memory, not during execution. Although creating bindings
during the execution of JavaScript functions is possible, it
appears uncommon in practice, as we do not observe such
cases in the studied benchmarks.

6.2. RQ2: Performance of GASKET

Measuring performance: For each package in Table 2,
we track the overall running time of GASKET and the
total number of function objects examined in a single run.
This performance measurement (single-threaded) is done
on a Linux machine equipped with an AMD EPYC 7413
processor and 24GB of RAM.
Results: Our results indicate that GASKET is efficient,
analyzing most packages in under 100 seconds. For all
categories except Deno FFI, execution time is ∼14 seconds,
primarily due to the overhead of attaching and detaching
GDB to the process for symbol resolution.

We observe that execution time scales well with package
size. For example, analyzing @u4/opencv4nodejs requires
examining 43 times more objects than re2; yet it leads to
only a 2-fold increase in execution time. GASKET’s running
times are acceptable given that the analysis only needs to
be performed once per package-version combination and the
results can then be reused.

6.3. RQ3: Applicability of GASKET

Our findings show that, regardless of the binding frame-
work or programming language used, the JavaScript objects
created during module instantiation are ultimately internal
V8 objects. GASKET effortlessly captures the bridges across
different embedders and binding frameworks by incorporat-
ing an average of 70 lines of code for locating and extracting
the function pointer from the internal JSFunction object
(Section 5). Notably, GASKET is the first approach to extend
bridge identification to Rust-based frameworks, as well as
Wasm and the Deno.dlopen API.
Applicability of static analysis: Regarding existing static
analysis techniques, the final columns of Table 2 show the
categories that each technique supports. We use checkmarks
to indicate that a technique attempts to capture JavaScript-
Native bridges for the associated binding framework, not
that it does so comprehensively (more details in Section 6.4).

We consider two security tools that statically compute
JavaScript-native bridges. CHARON [14] builds on the Joern
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TABLE 2: Descriptive characteristics of the selected benchmarks and GASKET’s execution results.

Effectiveness Performance Applicability
Package Native funcs

(Gr. truth)
Found Recall Time (s) Objects Function

Objects
Languages Runtime Binding

Framework
CHARON HODOR

re2 10 10 100 14 604 402 C++

Node.js

NaN ✓ ✗@u4/opencv4nodejs 685 685 100 34 26,293 12,549 C++
leveldown 23 23 100 14 1,476 991 C++ Node-API ✓ ✗fs-native-extensions 14 14 100 14 1,187 847 C
sharp 13 13 100 13 1,146 831 C++ node-addon-api ✓ ✗sqlite3 27 27 100 14 1,426 943 C++
fs (internal) 67 67 100 15 2,837 1,907 C++ ad-hoc* ✗ ✓os (internal) 13 13 100 14 552 451 C++
skia-canvas 174 174 100 15 6,459 3,407 Rust neon ✗ ✗@cubejs-backend/native 16 16 100 15 1,245 879 Rust
lz4-napi 12 12 100 14 1,113 8,155 Rust napi-rs ✗ ✗@napi-rs/canvas 101 101 100 16 4,163 2,239 Rust, C++
@fluvio/client 35 35 100 15 1,872 1,183 Rust node-bindgen ✗ ✗venbind 3 3 100 14 816 671 Rust
tiny-secp256k1 22 22 100 97 6,711 5,239 - WASM ✗ ✗@cwasm/lodepng 5 5 100 14 846 686 -
fs (internal) 61 61 100 18 22,585 13,602 Rust

Deno
ad-hoc* ✗ ✗os (internal) 16 16 100 18 22,585 13,602 Rust

@db/sqlite 73 73 100 1 5,346 4,422 - Deno FFI ✗ ✗@b-fuze/deno-dom 5 5 100 4 40,338 33,366 -

TABLE 3: Bridge-finding results of GASKET vs. CHARON.

Technique Total False Pos. Statistical Measures (bridges/pkg)

5% Mean Median 95%

GASKET 20,427 0 1 16 3 48
CHARON 8,147 1341 (16%) 0 6 1 21

static analyzer [27] to generate code property graphs (CPGs)
for both JavaScript and C++ code. It identifies vulnerable
data flows from JavaScript function parameters to unsafe
C++ functions (e.g., memcpy). To connect the JavaScript and
C++ sides, CHARON uses regular expressions and specific
code patterns to detect binding-related C++ calls, such as
Nan::SetMethod, and extract their arguments statically.

Contrary to GASKET, CHARON only supports three
Node.js-based binding frameworks, namely Nan, Node-API,
and node-addon-api. While in theory CHARON could be
extended to support additional frameworks and runtimes,
doing so is non-trivial. Its static analysis engine, Joern, lacks
support for Rust and Wasm, making it difficult to analyze
popular bindings of Rust- and Wasm-specific code, without
substantial backend changes. Even with such extensions,
CHARON remains prone to false positives and negatives,
as we show in Section 6.4.

For completeness, we note that HODOR [16] targets
internal bindings in Node.js. In contrast, GASKET is runtime-
agnostic and can enhance HODOR’s runtime protection
mechanism by broadening its scope. For example, GASKET
can enable HODOR to apply runtime protection mechanisms
in arbitrary popular npm packages.

6.4. RQ4: Extending Security Tools with GASKET

Experimental setup: In this research question, we evaluate
how GASKET can actively enhance existing security tools
that perform cross-language analysis. Specifically, we focus
on CHARON [14], a vulnerability detection tool that relies
on cross-language taint analysis (see Section 6.3).

We evaluate the benefits that GASKET brings to CHARON
along two dimensions: (1) by comparing the set of
JavaScript-to-native function connections (bridges) identi-
fied by GASKET versus those detected by CHARON’s static
analysis, and (2) by replacing CHARON’s static bridge detec-
tion mechanism with GASKET’s dynamic one, and assessing
how this impacts CHARON’s overall effectiveness in finding
vulnerabilities in native bindings of JavaScript applications.
Benchmarks: To assess how GASKET enhances CHARON,
we begin with the original CHARON dataset of 9,083
npm packages with native extensions. We manually ex-
clude 2,314 packages that are platform-specific (e.g.,
Windows-only or macOS-only), We also manually add 1,446
extra packages, identified by querying npm for dependents of
helper packages commonly used in native extensions (e.g.,
node-pre-gyp). This yields a total benchmark of 8,214 npm
packages, all of which rely on binding frameworks sup-
ported by CHARON (Table 2). We successfully install 1,266
of these packages and perform our comparison only on this
subset, generating bridge information using both GASKET
and CHARON. The remaining packages are excluded from
the comparison either because of installation failures of
broken and deprecated packages or because CHARON en-
counters unexpected analysis errors.

6.4.1. Results: Bridge-Finding Capability. Table 3 sum-
marizes the bridge-finding results of GASKET and CHARON
across the 1,266 npm packages. Overall, GASKET detects
approximately 2.5× more bridges than CHARON: 20,427
bridges compared to 8,147. On average, GASKET reports 16
bridges per package (median: 3), whereas CHARON reports
only 3 bridges per package on average (median: 1). In sum-
mary, GASKET uncovers 13,631 not covered by CHARON,
while CHARON detects a total of 1,342 bridges not reported
by GASKET (Figure 6c). Importantly, all bridges found
by GASKET are guaranteed to be true positives: by design,
GASKET does not produce false bridges. Later, we dis-
cuss the bridges exclusively found by CHARON (see “False
bridges in CHARON”).
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Figure 6: Comparing bridge-finding capability of GASKET and CHARON across 1,266 npm packages.

Figure 6a shows that CHARON fails to detect any bridge
in nearly half of the packages (624/1,266), while GASKET
detects at least one in all. Most GASKET detections fall in
the [1–5] range, but it identifies over 25 bridges in more
than 100 packages. Figure 6b shows that GASKET finds more
bridges in 61% of the cases (776/1,266), CHARON more
in 10% (122), and both agree in 29% (349) instances.
False bridges in CHARON: We manually study each of
the bridges exclusively detected by CHARON (1,342 bridges
in total). We find that all but one case are false bridges,
accounting for 16% of CHARON’s overall results.

CHARON’s false bridges stem from three main reasons.
First, it over-approximates *.Set() calls, which are used
to expose both functions and primitive values (714 cases).
Second, CHARON may misinterpret C++ namespace labels
as native function names (470 cases). Third, CHARON ana-
lyzes source files regardless of whether they are compiled
(157 cases). For example, in @div arora/libpg-query, it
reports a bridge from a file that was removed from the build
process six years ago. Since CHARON does not distinguish
between compiled and unused files, it erroneously includes
this outdated code in its analysis.
Missed bridges in GASKET: False negatives in GASKET
arise when function objects are created dynamically at run-
time rather than at module load time. We observe one such
case in the v8-sandbox package, where its native function
Initialize creates an additional JavaScript function only
when it is invoked. Since GASKET analyzes the memory
immediately after module loading (i.e., without executing
any further code), these dynamically created objects are not
visible to GASKET’s analysis. Note that our manual inspec-
tion of all bridges reported by CHARON but not reported
by GASKET reveal that the majority of them (99.9%) are
not missed bridges of GASKET; rather, they stem from false
positives in CHARON.

6.4.2. Results: Vulnerability-Finding Capability. We inte-
grate GASKET into CHARON by replacing its JavaScript-to-
native bridge identification mechanism, requiring only ten
lines of additional code. This enhanced version, denoted
as CHARON+ (CHARON with GASKET), leverages GAS-
KET’s results to perform cross-language taint analysis and

TABLE 4: Comparison of vulnerability detection results
between CHARON and CHARON+.

Tool Packages Vln. flows

CHARON 68 404
CHARON+ 91 458

TABLE 5: Summary of vulnerability types in the flows
exclusively detected by CHARON+.

Vulnerability type Packages Vln. Flows Exploitable Time Bomb

Integer Overflow 7 14 2 0
Division By Zero 10 12 3 0
Memory Leak 4 8 8 0
Buffer overflow 4 9 3 1
Null Ptr Dereference 2 2 2 0
malloc corruption 8 9 1 5

Total - 54 19 6

detect native-level vulnerabilities, such as memory leaks,
buffer overflows, or integer overflows. This is achieved by
computing data flows from user-controlled inputs in the
JavaScript code (sources) to unsafe function calls in native
code (e.g., strcpy), without any intervening sanitization.
We refer the reader to the original CHARON’s paper [14] for
more details about this taint analysis. We evaluate the impact
of this integration by comparing the bug-finding results of
CHARON+ against the original CHARON.

Table 4 summarizes the bug-finding results. Across
the 1,266 analyzed packages, CHARON detects 404 vulner-
able flows in 68 unique packages. In contrast, CHARON+

uncovers 458 vulnerable flows across 91 packages. Impor-
tantly, 23 of these packages (34% more than CHARON) con-
tain vulnerabilities that CHARON misses. This demonstrates
that GASKET enables CHARON to discover new vulnerable
flows that were previously undetectable. Notably, CHARON
may report multiple flows per vulnerability due to common
native suffixes (e.g., many flows lead to the same sink). As
such, the raw number of flows can be skewed by packages
with multiple vulnerable flows (> 60 flows).

Exploitable vulnerable flows: We manually analyze the 54
vulnerable flows exclusively reported by CHARON+ to assess
their real-world exploitability. For each flow, we examine

https://www.npmjs.com/package/@div_arora/libpg-query
https://www.npmjs.com/package/v8-sandbox
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the source JavaScript function and craft test cases with
carefully chosen arguments aimed at triggering the reported
vulnerability type (e.g., buffer overflow or division by zero).
Where necessary to confirm our findings, we recompile each
package with sanitizers [28] (e.g., ASan and UBSan) to
verify that our test cases trigger alarms.

Table 5 presents the results of this analysis. We success-
fully create proof-of-concept exploits for 19 out of the 54
flows, residing in 12 packages. These include, among others,
8 memory leaks (e.g., repeatedly invoking native functions
that allocate memory without releasing it), 3 memory cor-
ruption bugs (e.g., buffer overflows, malloc corruption), 2
arithmetic overflows, and 3 division-by-zero errors. We use
the term malloc corruption to refer to cases where a signed
integer is used as an argument to malloc, where the implicit
cast to size t can potentially underflow.

The security impact of these vulnerabilities ranges
from DoS attacks to potential arbitrary code execution.
This demonstrates the practical value of GASKET in help-
ing CHARON uncover previously undetected issues.

Time bombs: We are unable to exploit 35 of the reported
vulnerable flows. However, this does not imply that these
flows are unexploitable. In fact, we identify six flows that we
consider “time bombs”. These include vulnerabilities that
are currently unexploitable only due to limitations in the
JavaScript runtime but could become exploitable if these
constraints evolve in future versions. A recurring pattern
involves storing the length of a v8::String in a signed int,
adding a constant offset (e.g., 32), and then calling malloc.
Currently, V8 limits string lengths to 229 characters. This
cap has fluctuated over time (from 228 to 230) in response
to user feedback [29]. If raised further, adding even a small
offset could cause an integer overflow and pass a negative
size to malloc (assuming wrap-around semantics).

Discussion: The results demonstrate the significant advan-
tage GASKET offers to security tools, such as CHARON.
Specifically, the 13,631 bridges identified exclusively
by GASKET (Figure 6c) present opportunities for uncovering
additional vulnerabilities. This is because many of these
bridges remain underutilized by CHARON primarily due to
limitations in its taint analysis. For example, CHARON does
not reason about asynchronous execution paths, such as
those implemented using libuv [30], which are common
in native JavaScript bindings.

A concrete case is the sqlite3 package, where GASKET
successfully detects all relevant bindings. One such binding
asynchronously invokes a native callback via libuv, and in
this callback, user-controlled input is passed to an unsafe
memcpy(ptr, 0, 0) call. This call exhibits undefined
behavior, which can lead to vulnerabilities in the presence
of optimizing compilers [31], [32]. We manually confirm
this flow and issue by constructing a test-case that results in
a UBSan alarm. The developers have addressed our report.
Both CHARON and CHARON+ fail to detect vulnerable flow
because they do not analyze asynchronous paths in native
code. This demonstrates that our work could be further
leveraged by more advanced security analysis tools.

TABLE 6: Reachability analysis results for 10 vulnera-
bilities affecting Node.js packages with native extensions.
“vuln. ver.” indicates analyzed dependents using vulnerable
versions. “Call” shows the subset where the vulnerable
symbol(s) is reachable in the cross-language call graph.

Vulnerability ID Package Vuln. symbol(s) Dependents

vuln. ver. Call

CVE-2022-25324 [33] bignum Upowm, Bpowm 169 11
CVE-2022-21144 [34] libxmljs XmlDocument::FromHtml 223 150
CVE-2022-21227 [23] sqlite3 Statement::BindParameter 203 4
CVE-2022-25852 [35] pg-native SendQuery,

SendQueryParams
97 4

CVE-2022-25345 [36] @discordjs/opus OpusEncoder::Encode 105 3
CVE-2024-21526 [37] speaker speaker open 155 126
CVE-2022-21164 [38] node-lmdb TxnWrap::putString 22 4
CVE-2024-34394 [39] libxmljs2 get local namespaces 40 1
CVE-2025-3194 [40] bigint-buffer toBigInt 198 56
GHSA-9v62-24cr [41] node-sass get importer entry 208 27

6.5. RQ5: Reachability Analysis with GASKET

We demonstrate how GASKET enhances vulnerability
prioritization through cross-language reachability analy-
sis. Current tools such as npm-audit check dependencies
against the GitHub Advisory Database [42] but generate
numerous false positives, overwhelming developers with
alerts for unreachable vulnerabilities. Existing reachability
analysis techniques are limited to pure JavaScript code and
cannot handle vulnerabilities in native extensions, where
many critical issues reside. We address this gap by leverag-
ing GASKET to construct cross-language call graphs, which
enable reachability analysis across JavaScript and native
code boundaries.
Experimental setup: We utilize our dataset from RQ4.
First, we sort the packages by popularity and then examine
if they include vulnerabilities in their previous versions by
querying the GitHub advisory database [42]. If they do
so, we check if the vulnerabilities reside in their native
extensions by examining fixing commits. In this way we
identify 10 packages and their associated vulnerable version
ranges, six of which are also studied by Staicu et al. [9].

For each vulnerable package, we collect dependent pack-
ages using npm’s API, which limits results to a maximum
of 396 dependents per package. For packages with more
dependents, we analyze this maximum returned subset. Our
final dataset comprises 2,197 dependent packages across all
vulnerable packages.
Cross-language call graph construction: We employ
a multi-step approach to construct call graphs spanning
JavaScript and native code. For JavaScript analysis, we
utilize Jelly [43], [44], [45], a well-established static call
graph generator (see Section 7). We also use Ghidra [46] to
generate call graphs from compiled binaries.

Our analysis pipeline works as follows. First, we resolve
version constraints in package.json to determine usage
of vulnerable versions. Then, we generate JavaScript call
graphs using Jelly and construct binary call graphs for native
extensions using Ghidra. Finally, we identify JavaScript-
native bridges using GASKET and integrate each component
to determine the reachability of vulnerable native functions
from JavaScript entry points.

https://www.npmjs.com/package/sqlite3


PREPRIN
T

Results and impact: Table 6 presents our findings, which
demonstrate substantial reduction in false positives: for ex-
ample, while 169 packages depend on vulnerable versions
of bignum, only 11 actually invoke the vulnerable functions
Upowm and Bpowm. Similarly, among 203 packages using
vulnerable sqlite3 versions, only 4 reach the vulnerable
Statement::BindParameter function.

Our findings indicate that cross-language reachability
analysis can significantly reduce alert fatigue by filtering
out non-exploitable vulnerability warnings. We responsibly
disclosed our findings to maintainers of 15 transitively af-
fected packages, recommending dependency version updates
where appropriate.
Threats to validity: One threat to the validity of our
results is the potential inaccuracy of the cross-language call
graph, which may include false positives or false negatives
due to limitations in the tools used (i.e., Jelly and Ghidra).
However, our approach is agnostic to the choice of call graph
generators and can be integrated with other tools as well.

7. Related Work

Multi-language program analysis: Multi-language pro-
gram analysis has gained significant attention due to the
prevalence of polyglot applications. Staicu et al. [9] analyze
the misuse of native extension APIs in scripting languages,
highlighting potential security threats introduced by these
extensions. CHARON is another related tool, which we refer
the reader to Section 6.4 for a detailed comparison.

For JavaScript-specific environments, several approaches
have been developed to handle language interactions and
framework-specific extensions. Bae et al. [47] propose a
type system that supports interactions between JavaScript
and Java to detect bugs in Android applications. Lee et
al. [48] employ static analysis to detect these interactions
and identify potential information leaks. Similarly, Bai et
al. [49] focus on Android applications by providing a
taint-tracking approach to examine interoperations between
JavaScript and native code. ReactAppScan [50] constructs
component graphs to track data flows across JavaScript-
XML components for React vulnerability detection.

Python-native bridge analysis has also received
considerable attention. Our work is directly inspired
by PYXRAY [26], which introduces the concept of object
layout analysis. However, CPython differs fundamentally
from JavaScript engines. In Section 4, we outline the unique
challenges in adapting this approach to the JavaScript
ecosystem. FROG [25] focuses specifically on Python-
native bridges by statically analyzing Python and C source
files to generate unified call graphs. POLYCRUISE [51]
enables dynamic information flow analysis through
symbolic dependencies in Python-C programs, facilitating
vulnerability discovery. Python-C interactions have been
further analyzed using abstract interpretation [52] and
declarative analysis [53]. Cross-language analysis has also
been extensively explored for Android applications [54],
[55], [56], [57], Java Native Interface [2], [58], [59], [60],
[61], and Go-C/C++ interactions via differential fuzzing [5].

Securing script execution environments: Runtime protec-
tion systems have emerged as a critical defense mechanism
for script execution environments. HODOR [16] implements
a runtime protection system for Node.js applications that en-
forces system call restrictions based on call graphs spanning
JavaScript and C/C++ layers of Node’s internal library. Wyss
et al. [11] develop a similar system call filtering mechanism
with a specific focus on install scripts. Abbadini et al. [15],
[20] propose runtime sandboxing solutions employing eBPF
to control native code access to system resources for both
Node.js and Deno environments.

Browser execution environments have also received at-
tention in security research. Zhao [1] introduces an object-
oriented permission system to confine potentially harmful
JavaScript operations. Vasilakis et al. [13], [62] propose
the use of both process-level isolation and language-centric
methods to achieve compartmentalization in scripting lan-
guage code. Narayan et al. [63] focus on the Firefox ecosys-
tem and C++, combining static information flow analysis
with lightweight runtime checks to confine faulty compo-
nents of the runtime system. Wasm, despite its sandboxed
execution environment, still faces security challenges from
low-level flaws [8]. Michael et al. [64] address this by
proposing memory safety principles that enable compiler-
based enforcement against runtime attacks.
Ecosystem-level security analysis: Large-scale ecosys-
tem analysis has become increasingly important for under-
standing security risks in modern software supply chains.
JSGO [19] addresses vulnerability validation in Node.js
by leveraging test suites for automatic input generation,
successfully reproducing known vulnerabilities. Ecosystem
mapping approaches [65] utilize call graphs to analyze call-
ing relationships across software systems, providing insights
into dependency structures.

Studies have revealed important patterns in vulnerability
propagation. Mir et al. [66] demonstrate that while one-third
of Maven packages contain vulnerable dependencies, only
1% actually invoke vulnerable methods. Zahan et al. [12]
analyze 1.6 million npm packages to detect supply chain
risk indicators, revealing concerning trends in dependency
management. Dependency bloat analysis has been explored
for Python [24], indicating that vulnerabilities often reside in
bloated areas of utilized packages. GASKET enables cross-
language reachability analysis as shown in Section 6.5.

8. Conclusion

We have presented GASKET, a dynamic analysis tool that
leverages V8’s internal object representation to detect for-
eign JavaScript bridges across diverse binding frameworks
and runtime environments. By analyzing function object
layouts at the JavaScript engine level, GASKET achieves
perfect recall without false positives, successfully handling
different binding frameworks.

Our evaluation across numerous npm packages demon-
strates that GASKET enables existing security tools to dis-
cover additional vulnerable flows in previously unexplored
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packages. Cross-language reachability analysis using GAS-
KET further highlights that a small fraction of applications
actually invoke vulnerable functions in their dependencies,
enabling better vulnerability prioritization and actionable
security alerts.
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Appendix A.
Extraction and Resolution Rules

Figure 7 summarizes the extraction and resolution rules
for all remaining binding frameworks and V8 embedders
supported by our approach. Notably, our method seamlessly
handles Chromium’s internal bindings, Rust-based frame-
works in Node.js, the Deno.dlopen API, and V8’s fast API
mechanism [67], which enables optimized native calls that
bypass traditional JavaScript bindings.

This enables existing security tools to handle broader
scenarios. For example, HODOR [16], originally designed to
restrict system calls in Node.js internal bindings, can now
apply the same protections to npm packages using Rust-
based extensions. Likewise, CHARON [14], which analyzes
native extensions in Node.js packages, can now be extended
with our approach to identify issues in the code of Chrome
browser add-ons, which although written in JavaScript,
interact with the natively-backed [68] Chrome Extension
API [69].

Appendix B.
Implementation Details of GASKET

1 const gasket = require("gasket_native.node");
2
3 function introspect(modpath) {
4 // import module under analysis
5 const mod = require(modpath);
6 // Init an object layout analysis
7 const ola = new gasket.OLAnalysis();
8 const worklist = [[mod, modpath]];
9 while (mod.length > 0) {

10 obj, objname = worklist.pop();
11 if (typeof obj === "function") {
12 // Visit internal JSFunction object and
13 // extract their function pointers (if present)
14 ola.visit_obj(obj, objname);
15 }
16 for (const child_attr of

getOwnAndPrototypeEnumAndNonEnumProps(obj)) {
17 const child_obj = obj[child_attr];
18 worklist.push([child_obj, objname + "." +

child_attr]);
19 }
20 }
21 // Resolve all registered function pointers and

return bridges.
22 return ola.resolve();
23 }

Figure 8: A sketch implementation of the introspect func-
tion in GASKET’s frontend.

Figure 8 presents a high-level overview of GAS-
KET’s frontend. Its core function, introspect, takes
a path to a JavaScript or native module, dynam-
ically imports it (line 5), and recursively traverses
the structure of the imported module object using
getOwnAndPrototypeEnumAndNonEnumProps (lines 9–20).
The introspection logic leverages GASKET’s backend via the
OLAnalysis class (lines 1 and 7), which exposes two native
instance methods:
• visit object(obj, objname) (lines 11–14): This

method accepts a JavaScript function object and its FQN.
It locates the corresponding JSFunction object in mem-
ory (Section 4.1) and extracts its wrapped function pointer
using the rules outlined in Figure 5. The extracted pointers
are stored in an internal map called pointer set, which
maps each object’s FQN to its native function pointer.

• resolve() (line 22): This method resolves the symbolic
names of all stored function pointers in pointer set,
using debugging tools, such as GDB (see below). It
returns a set of triples, where each triple corresponds to a
detected bridge consisting of: the FQN of the JavaScript
function object, the name of the native or Wasm function
it invokes, and the file (.so or .wasm) where that function
is defined.

Extracting function pointers: The rules in Figure 5
require accessing fields of JSFunction objects, whose
internal layout is opaque to embedders and their na-
tive extensions. While one could attempt to mimic this

https://v8.dev/blog/v8-release-87#unsafe-fast-js-calls
https://v8.dev/blog/v8-release-87#unsafe-fast-js-calls
https://github.com/chromium/chromium/blob/main/chrome/browser/extensions/api/omnibox/omnibox_api.cc
https://github.com/chromium/chromium/blob/main/chrome/browser/extensions/api/omnibox/omnibox_api.cc
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CHROMIUM
l = /usr/bin/chromium

α′ = H(α, pcb)
L(α′) = l

σ(H,L,W,α) = ⟨Rso(α
′), l⟩

NEON
s = neon::sys::fun::call boxed

Rso(H(α, pd · cb)) = s
α′ = H(α, name)

σ(H,L,W,α) = ⟨Rso(α
′), L(α′)⟩

NAPI-RS/NODE-BINGEN
s = Node::FunctionCallbackWrapper::Invoke

Rso(H(α, pcb)) = s
α′ = H(α, pd · cb)

σ(H,L,W,α) = ⟨Rso(α
′), L(α′)⟩

DENO-DLOPEN
s = deno::v8::CFnFrom<F>>::mapping::c fn

Rso(H(α, pcb)) = s
α′ = H(α, name)

σ(H,L,W,α) = ⟨Rso(α
′), L(α′)⟩

FAST-API
α′ = H(α, function data · cfunction overloads)

σ(H,L,W,α) = ⟨Rso(α
′), L(α′)⟩

Figure 7: Inference rules for resolving the name of the native function in binding created by the Chromium browser,
Rust-based binding frameworks in Node.js, Deno.dlopen API, and V8’s fast API.

layout with stub structs, doing so is brittle and error-
prone. Instead, we rely on V8’s internal debugging util-
ity v8 internal Print Object, which, given a raw
pointer, prints the object’s type and key fields. For example,
calling this function on the address of a JSFunction object
(0x2c6edfe37001) yields:

1 0x2c6edfe37001: [Function]
2 - map: 0x12a374c022f1 <Map[64]>
3 - prototype: 0x12a374c0ed89 <JSFunction>
4 - code: 0x315b00cd3d29 <Code BUILTIN HandleApiCall>
5 - function_data: 0x2c6edfe36bc <FunctionTemplateInfo>

We parse this output and recursively apply
v8 internal Print Object to follow relevant

access paths (e.g., function data) until we extract the
function pointer as specified by the rules.
Resolving function pointers: Once a function pointer is
extracted from the object layout, we resolve it using GDB by
running the info symbol <ptr> command. This resolves
both the symbol name and the shared library where it is
defined. For Wasm functions, resolution is based on the
export table of the corresponding Wasm module instance,
which is accessible from the object layout (Figure 5, rule
WASM).
Optimizations: To improve performance, GASKET defers
symbol resolution. When visit object is called (Figure 8;
line 14), it extracts and stores function pointers in the
internal state of the receiver object without resolving them
immediately. Only after introspection is complete, GASKET
invokes resolve (line 22) to resolve all stored pointers at
once. This avoids repeatedly attaching GDB into the current
process, which is an expensive operation.

Furthermore, during the initialization of the object layout
analysis (line 7), GASKET performs another optimization to
avoid repeated symbol resolution via GDB. It uses dlsym1

to retrieve the memory addresses of key framework-specific
symbols (e.g., FunctionCallbackWrapper::Invoke) and
caches them. Later, during layout analysis (line 14), GASKET
identifies which binding framework created a given object
by comparing function pointers directly against these pre-
resolved addresses (see Figure 5).

1. https://man7.org/linux/man-pages/man3/dlsym.3.html

https://man7.org/linux/man-pages/man3/dlsym.3.html
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